48 resultados para NOD mice
Resumo:
The GPR30 is a novel estrogen receptor (ER) that is a candidate membrane ER based on its binding to 17beta estradiol and its rapid signaling properties such as activation of the extracellular-regulated kinase (ERK) pathway. Its distribution in the mouse limbic system predicts a role for this receptor in the estrogenic modulation of anxiety behaviors in the mouse. A previous study showed that chronic administration of a selective agonist to the GPR30 receptor, G-1, in the female rat can improve spatial memory, suggesting that GPR30 plays a role in hippocampal-dependent cognition. In this study, we investigated the effect of a similar chronic administration of G-1 on behaviors that denote anxiety in adult ovariectomized female mice, using the elevated plus maze (EPM) and the open field test as well as the activation of the ERK pathway in the hippocampus. Although estradiol benzoate had no effect on behaviors in the EPM or the open field, G-1 had an anxiolytic effect solely in the open field that was independent of ERK signaling in either the ventral or dorsal hippocampus. Such an anxiolytic effect may underlie the ability of G-1 to increase spatial memory, by acting on the hippocampus.
Resumo:
BACKGROUND/AIMS: Estrogens are important effectors of reproduction and are critical for upregulating female reproductive behavior or lordosis in females. In addition to the importance of transcriptional regulation of genes by 17beta-estradiol-bound estrogen receptors (ER), extranuclear signal transduction cascades such as protein kinase A (PKA) are also important in regulating female sexual receptivity. GPR30 (G-protein coupled receptor 30), also known as GPER1, a putative membrane ER (mER), is a G protein-coupled receptor that binds 17beta-estradiol with an affinity that is similar to that possessed by the classical nuclear ER and activates both PKA and extracellular-regulated kinase signaling pathways. The high expression of GPR30 in the ventromedial hypothalamus, a region important for lordosis behavior as well as kinase cascades activated by this receptor, led us to hypothesize that GPR30 may regulate lordosis behavior in female rodents. METHOD: In this study, we investigated the ability of G-1, a selective agonist of GPR30, to regulate lordosis in the female mouse by administering this agent prior to progesterone in an estradiol-progesterone priming paradigm prior to testing with stud males. RESULTS: As expected, 17beta-estradiol benzoate (EB), but not sesame oil, increased lordosis behavior in female mice. G-1 also increased lordosis behavior in female mice and decreased the number of rejective responses towards male mice, similar to the effect of EB. The selective GPR30 antagonist G-15 blocked these effects. CONCLUSION: This study demonstrates that activation of the mER GPR30 stimulates social behavior in a rodent model in a manner similar to EB.
Resumo:
The GPR30, a former orphan GPCR, is a putative membrane estrogen receptor that can activate rapid signaling pathways such as extracellular regulated kinase (ERK) in a variety of cells and may contribute to estrogen's effects in the central nervous system. The distribution of GPR30 in the limbic system predicts a role for this receptor in the regulation of learning and memory and anxiety by estrogens. Though acute G-1 treatment is reported to be anxiogenic in ovariectomised female mice and in gonadally intact male mice, the effect of GPR30 activation is unknown in gonadectomised male mice. In this study, we show that an acute administration of G-1 to gonadectomised male mice, but not female mice, was anxiolytic on an elevated plus maze task, without affecting locomotor activity. In addition, though G-1 treatment did not regulate ERK, it was associated with increased estrogen receptor (ER)alpha phosphorylation in the ventral, but not dorsal, hippocampus of males. In the female, G-1 increased the ERK activation solely in the dorsal hippocampus, independent of state anxiety. This is the first study to report an anxiolytic effect of GPR30 activation in male mice, in a rapid time frame that is commensurate with non-genomic signaling by estrogen.