62 resultados para N-METHYLCARBAMATE PESTICIDES
Resumo:
Risk assessment for mammals is currently based on external exposure measurements, but effects of toxicants are better correlated with the systemically available dose than with the external administered dose. So for risk assessment of pesticides, toxicokinetics should be interpreted in the context of potential exposure in the field taking account of the timescale of exposure and individual patterns of feeding. Internal concentration is the net result of absorption, distribution, metabolism and excretion (ADME). We present a case study for thiamethoxam to show how data from ADME study on rats can be used to parameterize a body burden model which predicts body residue levels after exposures to LD50 dose either as a bolus or eaten at different feeding rates. Kinetic parameters were determined in male and female rats after an intravenous and oral administration of 14C labelled by fitting one-compartment models to measured pesticide concentrations in blood for each individual separately. The concentration of thiamethoxam in blood over time correlated closely with concentrations in other tissues and so was considered representative of pesticide concentration in the whole body. Body burden model simulations showed that maximum body weight-normalized doses of thiamethoxam were lower if the same external dose was ingested normally than if it was force fed in a single bolus dose. This indicates lower risk to rats through dietary exposure than would be estimated from the bolus LD50. The importance of key questions that should be answered before using the body burden approach in risk assessment, data requirements and assumptions made in this study are discussed in detail.
Resumo:
Population modelling is increasingly recognised as a useful tool for pesticide risk assessment. For vertebrates that may ingest pesticides with their food, such as woodpigeon (Columba palumbus), population models that simulate foraging behaviour explicitly can help predicting both exposure and population-level impact. Optimal foraging theory is often assumed to explain the individual-level decisions driving distributions of individuals in the field, but it may not adequately predict spatial and temporal characteristics of woodpigeon foraging because of the woodpigeons’ excellent memory, ability to fly long distances, and distinctive flocking behaviour. Here we present an individual-based model (IBM) of the woodpigeon. We used the model to predict distributions of foraging woodpigeons that use one of six alternative foraging strategies: optimal foraging, memory-based foraging and random foraging, each with or without flocking mechanisms. We used pattern-oriented modelling to determine which of the foraging strategies is best able to reproduce observed data patterns. Data used for model evaluation were gathered during a long-term woodpigeon study conducted between 1961 and 2004 and a radiotracking study conducted in 2003 and 2004, both in the UK, and are summarised here as three complex patterns: the distributions of foraging birds between vegetation types during the year, the number of fields visited daily by individuals, and the proportion of fields revisited by them on subsequent days. The model with a memory-based foraging strategy and a flocking mechanism was the only one to reproduce these three data patterns, and the optimal foraging model produced poor matches to all of them. The random foraging strategy reproduced two of the three patterns but was not able to guarantee population persistence. We conclude that with the memory-based foraging strategy including a flocking mechanism our model is realistic enough to estimate the potential exposure of woodpigeons to pesticides. We discuss how exposure can be linked to our model, and how the model could be used for risk assessment of pesticides, for example predicting exposure and effects in heterogeneous landscapes planted seasonally with a variety of crops, while accounting for differences in land use between landscapes.
Resumo:
The potential risk of agricultural pesticides to mammals typically depends on internal concentrations within individuals, and these are determined by the amount ingested and by absorption, distribution, metabolism, and excretion (ADME). Pesticide residues ingested depend, amongst other things, on individual spatial choices which determine how much and when feeding sites and areas of pesticide application overlap, and can be calculated using individual-based models (IBMs). Internal concentrations can be calculated using toxicokinetic (TK) models, which are quantitative representations of ADME processes. Here we provide a population model for the wood mouse (Apodemus sylvaticus) in which TK submodels were incorporated into an IBM representation of individuals making choices about where to feed. This allows us to estimate the contribution of individual spatial choice and TK processes to risk. We compared the risk predicted by four IBMs: (i) “AllExposed-NonTK”: assuming no spatial choice so all mice have 100% exposure, no TK, (ii) “AllExposed-TK”: identical to (i) except that the TK processes are included where individuals vary because they have different temporal patterns of ingestion in the IBM, (iii) “Spatial-NonTK”: individual spatial choice, no TK, and (iv) “Spatial-TK”: individual spatial choice and with TK. The TK parameters for hypothetical pesticides used in this study were selected such that a conventional risk assessment would fail. Exposures were standardised using risk quotients (RQ; exposure divided by LD50 or LC50). We found that for the exposed sub-population including either spatial choice or TK reduced the RQ by 37–85%, and for the total population the reduction was 37–94%. However spatial choice and TK together had little further effect in reducing RQ. The reasons for this are that when the proportion of time spent in treated crop (PT) approaches 1, TK processes dominate and spatial choice has very little effect, and conversely if PT is small spatial choice dominates and TK makes little contribution to exposure reduction. The latter situation means that a short time spent in the pesticide-treated field mimics exposure from a small gavage dose, but TK only makes a substantial difference when the dose was consumed over a longer period. We concluded that a combined TK-IBM is most likely to bring added value to the risk assessment process when the temporal pattern of feeding, time spent in exposed area and TK parameters are at an intermediate level; for instance wood mice in foliar spray scenarios spending more time in crop fields because of better plant cover.
Resumo:
Earthworms are significant ecosystem engineers and are an important component of the diet of many vertebrates and invertebrates, so the ability to predict their distribution and abundance would have wide application in ecology, conservation and land management. Earthworm viability is known to be affected by the availability and quality of food resources, soil water conditions and temperature, but has not yet been modelled mechanistically to link effects on individuals to field population responses. Here we present a novel model capable of predicting the effects of land management and environmental conditions on the distribution and abundance of Aporrectodea caliginosa, the dominant earthworm species in agroecosystems. Our process-based approach uses individual based modelling (IBM), in which each individual has its own energy budget. Individual earthworm energy budgets follow established principles of physiological ecology and are parameterised for A. caliginosa from experimental measurements under optimal conditions. Under suboptimal conditions (e.g. food limitation, low soil temperatures and water contents) reproduction is prioritised over growth. Good model agreement to independent laboratory data on individual cocoon production and growth of body mass, under variable feeding and temperature conditions support our representation of A. caliginosa physiology through energy budgets. Our mechanistic model is able to accurately predict A. caliginosa distribution and abundance in spatially heterogeneous soil profiles representative of field study conditions. Essential here is the explicit modelling of earthworm behaviour in the soil profile. Local earthworm movement responds to a trade-off between food availability and soil water conditions, and this determines the spatiotemporal distribution of the population in the soil profile. Importantly, multiple environmental variables can be manipulated simultaneously in the model to explore earthworm population exposure and effects to combinations of stressors. Potential applications include prediction of the population-level effects of pesticides and changes in soil management e.g. conservation tillage and climate change.
Resumo:
We used a laboratory study to compare the performance of rose-grain aphid, Metopolophium dirhodum(Walker)(Hemiptera:Aphididae),onthewheatcultivars‘Huntsman’(susceptible)and‘Rapier’ (partiallyresistant)inbothlowdensity(uncrowded)andhighdensity(crowded)coloniesandexamined the consequences for aphid susceptibility to malathion. Adult apterae that developed on Rapier wheat had their mean relative growth rate (MRGR) reduced by 6 and 9% under uncrowded and crowded conditions, respectively, whereas the crowding treatment reduced MRGR by 3%, but only in Rapier aphids. Rapier resistance also reduced adult dry weight by 13 and 14% under crowded and uncrowded conditions, respectively, whereas crowding reduced it by 34 and 35% in Rapier and Huntsman aphids, respectively. Development on Rapier substantially reduced the topical LC50 of malathion by 37.8 and 34.8% under crowded and uncrowded conditions, suggesting that plant antibiosis increased malathion susceptibility. By comparison, crowding only reduced the LC50 by 29.5 and 26.0% on Huntsman and Rapier. The LD50 data showed that reductions on aphid body size on Rapier and through crowding did not fully explain the differences in LC50. This was particularly in the values for crowded aphids that were actually 80% higher than for uncrowded ones. Thi sapparent tolerance of crowded aphids, however, may partly be due to loss of insecticide from small aphids at dosing. Evidence of synergy between plant resistance and insecticide susceptibility raisest he possibility of using reduced concentrations of pesticides to control aphids on resistant crop cultivars, with diminished impacts on non-target and beneficial species important in integrated pest management(IPM)program
Resumo:
BACKGROUND: Honeybees provide economically and ecologically vital pollination services to crops and wild plants. During the last decade elevated colony losses have been documented in Europe and North America. Despite growing consensus on the involvement of multiple causal factors, the underlying interactions impacting on honeybee health and colony failure are not fully resolved. Parasites and pathogens are among the main candidates, but sublethal exposure to widespread agricultural pesticides may also affect bees. METHODOLOGY/PRINCIPAL FINDINGS: To investigate effects of sublethal dietary neonicotinoid exposure on honeybee colony performance, a fully crossed experimental design was implemented using 24 colonies, including sister-queens from two different strains, and experimental in-hive pollen feeding with or without environmentally relevant concentrations of thiamethoxam and clothianidin. Honeybee colonies chronically exposed to both neonicotinoids over two brood cycles exhibited decreased performance in the short-term resulting in declining numbers of adult bees (-28%) and brood (-13%), as well as a reduction in honey production (-29%) and pollen collections (-19%), but colonies recovered in the medium-term and overwintered successfully. However, significantly decelerated growth of neonicotinoid-exposed colonies during the following spring was associated with queen failure, revealing previously undocumented long-term impacts of neonicotinoids: queen supersedure was observed for 60% of the neonicotinoid-exposed colonies within a one year period, but not for control colonies. Linked to this, neonicotinoid exposure was significantly associated with a reduced propensity to swarm during the next spring. Both short-term and long-term effects of neonicotinoids on colony performance were significantly influenced by the honeybees' genetic background. CONCLUSIONS/SIGNIFICANCE: Sublethal neonicotinoid exposure did not provoke increased winter losses. Yet, significant detrimental short and long-term impacts on colony performance and queen fate suggest that neonicotinoids may contribute to colony weakening in a complex manner. Further, we highlight the importance of the genetic basis of neonicotinoid susceptibility in honeybees which can vary substantially.
Resumo:
Interest in sustainable farming methods that rely on alternatives to conventional synthetic fertilizers and pesticides is increasing. Sustainable farming methods often utilize natural populations of predatory and parasitic species to control populations of herbivores, which may be potential pest species. We investigated the effects of several types of fertilizer, including those typical of sustainable and conventional farming systems, on the interaction between a herbivore and parasitoid. The effects of fertilizer type on percentage parasitism, parasitoid performance, parasitoid attack behaviour and responses to plant volatiles were examined using a model Brassica system, consisting of Brassica oleracea var capitata, Plutella xylostella (Lepidoptera) larvae and Cotesia vestalis (parasitoid). Percentage parasitism was greatest for P. xylostella larvae feeding on plants that had received either a synthetic ammonium nitrate fertilizer or were unfertilized, in comparison to those receiving a composite fertilizer containing hoof and horn. Parasitism was intermediate on plants fertilized with an organically produced animal manure. Male parasitoid tibia length showed the same pattern as percentage parasitism, an indication that offspring performance was maximized on the treatments preferred by female parasitoids for oviposition. Percentage parasitism and parasitoid size were not correlated with foliar nitrogen concentration. The parasitoids did not discriminate between hosts feeding on plants in the four fertilizer treatments in parasitoid behaviour assays, but showed a preference for unfertilized plants in olfactometer experiments. The percentage parasitism and tibia length results provide support for the preference–performance hypothesis
Resumo:
An evidence-based review of the potential impact that the introduction of genetically-modified (GM) cereal and oilseed crops could have for the UK was carried out. The inter-disciplinary research project addressed the key research questions using scenarios for the uptake, or not, of GM technologies. This was followed by an extensive literature review, stakeholder consultation and financial modelling. The world area of canola, oilseed rape (OSR) low in both erucic acid in the oil and glucosinolates in the meal, was 34M ha in 2012 of which 27% was GM; Canada is the lead producer but it is also grown in the USA, Australia and Chile. Farm level effects of adopting GM OSR include: lower production costs; higher yields and profits; and ease of farm management. Growing GM OSR instead of conventional OSR reduces both herbicide usage and environmental impact. Some 170M ha of maize was grown in the world in 2011 of which 28% was GM; the main producers are the USA, China and Brazil. Spain is the main EU producer of GM maize although it is also grown widely in Portugal. Insect resistant (IR) and herbicide tolerant (HT) are the GM maize traits currently available commercially. Farm level benefits of adopting GM maize are lower costs of production through reduced use of pesticides and higher profits. GM maize adoption results in less pesticide usage than on conventional counterpart crops leading to less residues in food and animal feed and allowing increasing diversity of bees and other pollinators. In the EU, well-tried coexistence measures for growing GM crops in the proximity of conventional crops have avoided gene flow issues. Scientific evidence so far seems to indicate that there has been no environmental damage from growing GM crops. They may possibly even be beneficial to the environment as they result in less pesticides and herbicides being applied and improved carbon sequestration from less tillage. A review of work on GM cereals relevant for the UK found input trait work on: herbicide and pathogen tolerance; abiotic stress such as from drought or salinity; and yield traits under different field conditions. For output traits, work has mainly focussed on modifying the nutritional components of cereals and in connection with various enzymes, diagnostics and vaccines. Scrutiny of applications submitted for field trial testing of GM cereals found around 9000 applications in the USA, 15 in Australia and 10 in the EU since 1996. There have also been many patent applications and granted patents for GM cereals in the USA for both input and output traits;an indication of the scale of such work is the fact that in a 6 week period in the spring of 2013, 12 patents were granted relating to GM cereals. A dynamic financial model has enabled us to better understand and examine the likely performance of Bt maize and HT OSR for the south of the UK, if cultivation is permitted in the future. It was found that for continuous growing of Bt maize and HT OSR, unless there was pest pressure for the former and weed pressure for the latter, the seed premia and likely coexistence costs for a buffer zone between other crops would reduce the financial returns for the GM crops compared with their conventional counterparts. When modelling HT OSR in a four crop rotation, it was found that gross margins increased significantly at the higher levels of such pest or weed pressure, particularly for farm businesses with larger fields where coexistence costs would be scaled down. The impact of the supply of UK-produced GM crops on the wider supply chain was examined through an extensive literature review and widespread stakeholder consultation with the feed supply chain. The animal feed sector would benefit from cheaper supplies of raw materials if GM crops were grown and, in the future, they might also benefit from crops with enhanced nutritional profile (such as having higher protein levels) becoming available. This would also be beneficial to livestock producers enabling lower production costs and higher margins. Whilst coexistence measures would result in increased costs, it is unlikely that these would cause substantial changes in the feed chain structure. Retailers were not concerned about a future increase in the amount of animal feed coming from GM crops. To conclude, we (the project team) feel that the adoption of currently available and appropriate GM crops in the UK in the years ahead would benefit farmers, consumers and the feed chain without causing environmental damage. Furthermore, unless British farmers are allowed to grow GM crops in the future, the competitiveness of farming in the UK is likely to decline relative to that globally.
Resumo:
The aims of the present study are to explore the willingness to pay a tax for the abolition of the use of pesticides as well as a premium price per kilo for organically grown fruit. An investigation was carried out in the region of Emilia-Romagna both by means of face to face questionnaires administered randomly in large supermarkets and via the World Wide Web. The results of econometric estimates show that consumers in this region appear to be particularly sensitive to the ban of pesticides and willing to pay higher prices for such products.
Resumo:
Income growth in highly industrialised countries has resulted in consumer choice of foodstuffs no longer being primarily influenced by basic factors such as price and organoleptic features. From this perspective, the present study sets out to evaluate how and to what extent consumer choice is influenced by the possible negative effects on health and environment caused by the consumption of fruit containing deposits of pesticides and chemical products. The study describes the results of a survey which explores and estimates consumer willingness to pay in two forms: a yearly contribution for the abolition of the use of pesticides on fruit, and a premium price for organically grown apples guaranteed by a certified label. The same questionnaire was administered to two samples. The first was a conventional face-to-face survey of customers of large retail outlets located around Bologna (Italy); the second was an Internet sample. The discrete choice data were analysed by means of probit and tobit models to estimate the utility consumers attribute to organically grown fruit and to a pesticide ban. The research also addresses questions of validity and representativeness as a fundamental problem in web-based surveys.
Resumo:
The intensification of agriculture and the development of synthetic insecticides enabled worldwide grain production to more than double in the last third of the 20th century. However, the heavy dependence and, in some cases, overuse of insecticides has been responsible for negative environmental and ecological impacts across the globe, such as a reduction in biodiversity, insect resistance to pesticides, negative effects on nontarget species (e.g. natural enemies) and the development of secondary pests. The use of recombinant DNA technology to develop genetically engineered (GE) insect resistant crops could mitigate many of the negative side effects of pesticides. One such genetic alteration enables crops to express toxic crystalline (Cry) proteins from the soil bacteria Bacillus thuringiensis (Bt). Despite the widespread adoption of Bt crops, there are still a range of unanswered questions concerning longer term agro-ecosystem interactions. For instance, insect species that are not susceptible to the expressed toxin can develop into secondary pests and cause significant damage to the crop. Here we review the main causes surrounding secondary pest dynamics in Bt crops and the impact of such outbreaks. Regardless of the causes, if non-susceptible secondary pest populations exceed economic thresholds, insecticide spraying could become the immediate solution at farmers’ disposal, and the sustainable use of this genetic modification technology may be in jeopardy. Based on the literature, recommendations for future research are outlined that will help to improve the knowledge of the possible longterm ecological trophic interactions of employing this technology.
Resumo:
There is little consensus on how agriculture will meet future food demands sustainably. Soils and their biota play a crucial role by mediating ecosystem services that support agricultural productivity. However, a multitude of site-specific environmental factors and management practices interact to affect the ability of soil biota to perform vital functions, confounding the interpretation of results from experimental approaches. Insights can be gained through models, which integrate the physiological, biological and ecological mechanisms underpinning soil functions. We present a powerful modelling approach for predicting how agricultural management practices (pesticide applications and tillage) affect soil functioning through earthworm populations. By combining energy budgets and individual-based simulation models, and integrating key behavioural and ecological drivers, we accurately predict population responses to pesticide applications in different climatic conditions. We use the model to analyse the ecological consequences of different weed management practices. Our results demonstrate that an important link between agricultural management (herbicide applications and zero, reduced and conventional tillage) and earthworms is the maintenance of soil organic matter (SOM). We show how zero and reduced tillage practices can increase crop yields while preserving natural ecosystem functions. This demonstrates how management practices which aim to sustain agricultural productivity should account for their effects on earthworm populations, as their proliferation stimulates agricultural productivity. Synthesis and applications. Our results indicate that conventional tillage practices have longer term effects on soil biota than pesticide control, if the pesticide has a short dissipation time. The risk of earthworm populations becoming exposed to toxic pesticides will be reduced under dry soil conditions. Similarly, an increase in soil organic matter could increase the recovery rate of earthworm populations. However, effects are not necessarily additive and the impact of different management practices on earthworms depends on their timing and the prevailing environmental conditions. Our model can be used to determine which combinations of crop management practices and climatic conditions pose least overall risk to earthworm populations. Linking our model mechanistically to crop yield models would aid the optimization of crop management systems by exploring the trade-off between different ecosystem services.
Resumo:
The study examined the contribution of the Cocoa Disease and Pest Control Programme (CODAPEC), which is a cocoa production-enhancing government policy, to reducing poverty and raising the living standards of cocoa farmers in Ghana. One hundred and fifty (150) cocoa farmers were randomly selected from five communities in the Bibiani-Anhwiaso-Bekwai district of the Western Region of Ghana and interviewed using structured questionnaires. Just over half of the farmers (53%) perceived the CODAPEC programme as being effective in controlling pests and diseases, whilst 56.6% felt that their yields and hence livelihoods had improved. In some cases pesticides or fungicides were applied later in the season than recommended and this had a detrimental effect on yields. To determine the level of poverty amongst farmers, annual household consumption expenditure was used as a proxy indicator. The study found that 4.7% of cocoa farmers were extremely poor having a total annual household consumption expenditure of less than GH¢ 623.10 ($310.00) while 8.0% were poor with less than GH¢ 801.62 ($398.81). An amount of money ranging from GH¢ 20.00 ($9.95) to GH¢ 89.04 ($44.29) per annum was needed to lift the 4.7% of cocoa farmers out of extreme poverty, which could be achieved through modest increases in productivity. The study highlighted how agricultural intervention programmes, such as CODAPEC, have the potential to contribute to improved farmer livelihoods.
Resumo:
Annual losses of cocoa in Ghana to mirids are significant. Therefore, accurate timing of insecticide application is critical to enhance yields. However, cocoa farmers often lack information on the expected mirid population for each season to enable them to optimise pesticide use. This study assessed farmers’ knowledge and perceptions of mirid control and their willingness to use forecasting systems informing them of expected mirid peaks and time of application of pesticides. A total of 280 farmers were interviewed in the Eastern and Ashanti regions of Ghana with a structured open and closed ended questionnaire. Most farmers (87%) considered mirids as the most important insect pest on cocoa with 47% of them attributing 30-40% annual crop loss to mirid damage. There was wide variation in the timing of insecticide application as a result of farmers using different sources of information to guide the start of application. The majority of farmers (56%) do not have access to information on the type, frequency and timing of insecticides to use. However, respondents who are members of farmer groups had better access to such information. Extension officers were the preferred channel for information transfer to farmers with 72% of farmers preferring them to other available methods of communication. Almost all the respondents (99%) saw the need for a comprehensive forecasting system to help farmers manage cocoa mirids. The importance of accurate timing for mirid control based on forecasted information to farmer groups and extension officers was discussed.
Resumo:
Recent concern over global pollinator declines has led to considerable research on the effects of pesticides on bees1, 2, 3, 4, 5. Although pesticides are typically not encountered at lethal levels in the field, there is growing evidence indicating that exposure to field-realistic levels can have sublethal effects on bees, affecting their foraging behaviour1, 6, 7, homing ability8, 9 and reproductive success2, 5. Bees are essential for the pollination of a wide variety of crops and the majority of wild flowering plants10, 11, 12, but until now research on pesticide effects has been limited to direct effects on bees themselves and not on the pollination services they provide. Here we show the first evidence to our knowledge that pesticide exposure can reduce the pollination services bumblebees deliver to apples, a crop of global economic importance. Bumblebee colonies exposed to a neonicotinoid pesticide provided lower visitation rates to apple trees and collected pollen less often. Most importantly, these pesticide-exposed colonies produced apples containing fewer seeds, demonstrating a reduced delivery of pollination services. Our results also indicate that reduced pollination service delivery is not due to pesticide-induced changes in individual bee behaviour, but most likely due to effects at the colony level. These findings show that pesticide exposure can impair the ability of bees to provide pollination services, with important implications for both the sustained delivery of stable crop yields and the functioning of natural ecosystems.