55 resultados para Modern pollen rain
Resumo:
During the microspore division in Datura innoxia, the mitotic spindle is oriented in planes both perpendicular (PE) and oblique (OB) to the spore wall against which the nucleus is situated. However, irrespective of polarity, the usual type of hemispherical wall is laid down at cytokinesis and isolates the generative cell from the rest of the pollen grain (type A). In PE spores the vegetative nucleus initially occupies a central position in the pollen grain, whereas in OB spores the vegetative nucleus lies at the periphery of the grain close to the generative cell. In anther cultures initiated just before the microspore division is due to take place, no marked change can be observed in either orientation or symmetry of the mitotic spindle when the spores divide. In some, however, cytokinesis is disrupted and deposition of the hemispherical wall arrested. In the absence of a complete wall, differentiation of the generative cell cannot take place and binucleate pollen grains are formed having 2 vegetative-type nuclei (type B). The 2 nuclei in the B pollens are always situated against the pollen-grain wall, suggesting that the disruption phenomenon is related to the OB spores. The incomplete wall always makes contact with the intine on the intine-side of the spindle. Wall material may be represented merely as short stubs projecting out from the intine into the cytoplasm, in which event the 2 nuclei lie close to each other and are separated by only a narrow zone of cytoplasm. In other grains the wall is partially developed between the nuclei and terminates at varying distances from the tonoplast; in these, the nuclei are separated by a wider zone of cytoplasm. The significance of these binucleate grains in pollen embryogenesis is discussed.
Resumo:
In young pollen grains of Datura innoxia, a wall of the usual hemispherical type separates the 2 gametophytic cells initially and, in the electron microscope, appears as an electron-translucent matrix which is contiguous with the intine. Before detachment of the generative cell from the intine, the matrix decreases in thickness and in places is dispersed altogether leaving the plasmalemmae on either side of it in close apposition. A particularly prominent zone, triangular in profile, is left where the wall joins with the intine. After detachment of the cell, remnants of the matrix can be seen distributed irregularly around the cell and it is supposed that these are partly derived from material in the triangular zone as the cell is drawn away from the intine. The wall residues persist throughout the maturation phase of the pollen and are considered to be either callose resulting from incomplete digestion of the initial wall, or some other polysaccharide material which is unevenly laid down along the wall and concentrated at the junction with the intine. In pollen induced into embryogenesis by anther culture, wall material is also distributed irregularly around the detached cell in a series of discrete zones, but these are more extensive than in vivo, closer together and in many instances highly dilated. The wall profiles thus have a beaded appearance, the 'beads' being connected together by short links of the 2 apposed plasmalemmae. The contents of the swollen zones have a similar electron density to that of the matrix in vivo but also show traces of a fibrillar component. It is postulated that this unusual swelling is a prelude to dispersal of the wall by disruption of the plasmalemmal links and to the establishment of cytoplasmic continuity between the 2 cells. The significance of such binucleate pollen grains in the formation of non-haploid embryos is discussed.
Resumo:
Ultrastructural features of embryogenic pollen in Datura innoxia are described, just prior to, during, and after completion of the first division of the presumptive vegetative cell. In anther cultures initiated towards the end of the microspore phase and incubated at 28 degrees C in darkness, the spores divide within 24 h and show features consistent with those of dividing spores in vivo. Cytokinesis is also normal in most of the spores and the gametophytic cell-plate curves round the presumptive generative nucleus in the usual highly ordered way. Further differentiation of the 2 gametophytic cells does not take place and the pollen either switches to embryogenesis or degenerates. After 48-72 h, the remaining viable pollen shows the vegetative cell in division. The cell, which has a large vacuole and thin layer of parietal cytoplasm carried over from the microspore, divides consistently in a plane parallel to the microspore division. The dividing wall follows a less-ordered course than the gametophytic wall and usually traverses the vacuole, small portions of which are incorporated into the daughter cell adjacent to the generative cell. The only structural changes in the vegetative cell associated with the change in programme appear to be an increase in electron density of both plastids and mitochondria and deposition of an electron-dense material (possibly lipid) on the tonoplast. The generative cell is attached to the intine when the vegetative cell divides. Ribosomal density increases in the generative cell and exceeds that in the vegetative cell. A thin electron-dense layer also appears in the generative-cell wall. It is concluded that embryogenesis commences as soon as the 2 gametophytic cells are laid down. Gene activity associated with postmitotic synthesis of RNA and protein in the vegetative cell is switched off. The data are discussed in relation to the first division of the embryogenic vegetative cells in Nicotiana tabacum.