77 resultados para Melt depth
Resumo:
This paper evaluates the relationship between the cloud modification factor (CMF) in the ultraviolet erythe- mal range and the cloud optical depth (COD) retrieved from the Aerosol Robotic Network (AERONET) "cloud mode" algorithm under overcast cloudy conditions (confirmed with sky images) at Granada, Spain, mainly for non-precipitating, overcast and relatively homogenous water clouds. Empirical CMF showed a clear exponential dependence on experimental COD values, decreasing approximately from 0.7 for COD=10 to 0.25 for COD=50. In addition, these COD measurements were used as input in the LibRadtran radia tive transfer code allowing the simulation of CMF values for the selected overcast cases. The modeled CMF exhibited a dependence on COD similar to the empirical CMF, but modeled values present a strong underestimation with respect to the empirical factors (mean bias of 22 %). To explain this high bias, an exhaustive comparison between modeled and experimental UV erythemal irradiance (UVER) data was performed. The comparison revealed that the radiative transfer simulations were 8 % higher than the observations for clear-sky conditions. The rest of the bias (~14 %) may be attributed to the substantial underestimation of modeled UVER with respect to experimental UVER under overcast conditions, although the correlation between both dataset was high (R2 ~ 0.93). A sensitive test showed that the main reason responsible for that underestimation is the experimental AERONET COD used as input in the simulations, which has been retrieved from zenith radiances in the visible range. In this sense, effective COD in the erythemal interval were derived from an iteration procedure based on searching the best match between modeled and experimental UVER values for each selected overcast case. These effective COD values were smaller than AERONET COD data in about 80 % of the overcast cases with a mean relative difference of 22 %.
Resumo:
Leaders across companies initiate and implement change and thus are crucial for successful organizations. This study takes a competency perspective on leaders and investigates the competencies leaders show to facilitate effective change. The article explores the content of the construct of leaders’ change competency and examines its antecedents and effects. We conducted a case study in a German tourism company undergoing a major change process. The study identified (a) distinct content facets regarding the construct of leaders’ change competency along its two dimensions of leaders’ readiness for change and leaders’ change ability; (b) the construct’s antecedents, specifically contextual factors, leaders’ competency potentials, and attitudes toward change; and (c) beneficial effects of leaders’ change competency. The study ends with implications for research and leadership practice as well as suggestions for future studies on leaders’ change competency.
Resumo:
The extent and thickness of the Arctic sea ice cover has decreased dramatically in the past few decades with minima in sea ice extent in September 2005 and 2007. These minima have not been predicted in the IPCC AR4 report, suggesting that the sea ice component of climate models should more realistically represent the processes controlling the sea ice mass balance. One of the processes poorly represented in sea ice models is the formation and evolution of melt ponds. Melt ponds accumulate on the surface of sea ice from snow and sea ice melt and their presence reduces the albedo of the ice cover, leading to further melt. Toward the end of the melt season, melt ponds cover up to 50% of the sea ice surface. We have developed a melt pond evolution theory. Here, we have incorporated this melt pond theory into the Los Alamos CICE sea ice model, which has required us to include the refreezing of melt ponds. We present results showing that the presence, or otherwise, of a representation of melt ponds has a significant effect on the predicted sea ice thickness and extent. We also present a sensitivity study to uncertainty in the sea ice permeability, number of thickness categories in the model representation, meltwater redistribution scheme, and pond albedo. We conclude with a recommendation that our melt pond scheme is included in sea ice models, and the number of thickness categories should be increased and concentrated at lower thicknesses.
Resumo:
During winter the ocean surface in polar regions freezes over to form sea ice. In the summer the upper layers of sea ice and snow melts producing meltwater that accumulates in Arctic melt ponds on the surface of sea ice. An accurate estimate of the fraction of the sea ice surface covered in melt ponds is essential for a realistic estimate of the albedo for global climate models. We present a melt-pond–sea-ice model that simulates the three-dimensional evolution of melt ponds on an Arctic sea ice surface. The advancements of this model compared to previous models are the inclusion of snow topography; meltwater transport rates are calculated from hydraulic gradients and ice permeability; and the incorporation of a detailed one-dimensional, thermodynamic radiative balance. Results of model runs simulating first-year and multiyear sea ice are presented. Model results show good agreement with observations, with duration of pond coverage, pond area, and ice ablation comparing well for both the first-year ice and multiyear ice cases. We investigate the sensitivity of the melt pond cover to changes in ice topography, snow topography, and vertical ice permeability. Snow was found to have an important impact mainly at the start of the melt season, whereas initial ice topography strongly controlled pond size and pond fraction throughout the melt season. A reduction in ice permeability allowed surface flooding of relatively flat, first-year ice but had little impact on the pond coverage of rougher, multiyear ice. We discuss our results, including model shortcomings and areas of experimental uncertainty.
Resumo:
The extent and thickness of the Arctic sea ice cover has decreased dramatically in the past few decades with minima in sea ice extent in September 2007 and 2011 and climate models did not predict this decline. One of the processes poorly represented in sea ice models is the formation and evolution of melt ponds. Melt ponds form on Arctic sea ice during the melting season and their presence affects the heat and mass balances of the ice cover, mainly by decreasing the value of the surface albedo by up to 20%. We have developed a melt pond model suitable for forecasting the presence of melt ponds based on sea ice conditions. This model has been incorporated into the Los Alamos CICE sea ice model, the sea ice component of several IPCC climate models. Simulations for the period 1990 to 2007 are in good agreement with observed ice concentration. In comparison to simulations without ponds, the September ice volume is nearly 40% lower. Sensitivity studies within the range of uncertainty reveal that, of the parameters pertinent to the present melt pond parameterization and for our prescribed atmospheric and oceanic forcing, variations of optical properties and the amount of snowfall have the strongest impact on sea ice extent and volume. We conclude that melt ponds will play an increasingly important role in the melting of the Arctic ice cover and their incorporation in the sea ice component of Global Circulation Models is essential for accurate future sea ice forecasts.
Resumo:
Analysis of human behaviour through visual information has been a highly active research topic in the computer vision community. This was previously achieved via images from a conventional camera, but recently depth sensors have made a new type of data available. This survey starts by explaining the advantages of depth imagery, then describes the new sensors that are available to obtain it. In particular, the Microsoft Kinect has made high-resolution real-time depth cheaply available. The main published research on the use of depth imagery for analysing human activity is reviewed. Much of the existing work focuses on body part detection and pose estimation. A growing research area addresses the recognition of human actions. The publicly available datasets that include depth imagery are listed, as are the software libraries that can acquire it from a sensor. This survey concludes by summarising the current state of work on this topic, and pointing out promising future research directions.
Resumo:
Details are given of the development and application of a 2D depth-integrated, conformal boundary-fitted, curvilinear model for predicting the depth-mean velocity field and the spatial concentration distribution in estuarine and coastal waters. A numerical method for conformal mesh generation, based on a boundary integral equation formulation, has been developed. By this method a general polygonal region with curved edges can be mapped onto a regular polygonal region with the same number of horizontal and vertical straight edges and a multiply connected region can be mapped onto a regular region with the same connectivity. A stretching transformation on the conformally generated mesh has also been used to provide greater detail where it is needed close to the coast, with larger mesh sizes further offshore, thereby minimizing the computing effort whilst maximizing accuracy. The curvilinear hydrodynamic and solute model has been developed based on a robust rectilinear model. The hydrodynamic equations are approximated using the ADI finite difference scheme with a staggered grid and the solute transport equation is approximated using a modified QUICK scheme. Three numerical examples have been chosen to test the curvilinear model, with an emphasis placed on complex practical applications
Resumo:
Background: Targeted Induced Loci Lesions IN Genomes (TILLING) is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM) analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs) and insertion/deletions (IN/DELs) enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. Results: We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Conclusions: Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations) from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.
Resumo:
The global cycle of multicomponent aerosols including sulfate, black carbon (BC),organic matter (OM), mineral dust, and sea salt is simulated in the Laboratoire de Me´te´orologie Dynamique general circulation model (LMDZT GCM). The seasonal open biomass burning emissions for simulation years 2000–2001 are scaled from climatological emissions in proportion to satellite detected fire counts. The emissions of dust and sea salt are parameterized online in the model. The comparison of model-predicted monthly mean aerosol optical depth (AOD) at 500 nm with Aerosol Robotic Network (AERONET) shows good agreement with a correlation coefficient of 0.57(N = 1324) and 76% of data points falling within a factor of 2 deviation. The correlation coefficient for daily mean values drops to 0.49 (N = 23,680). The absorption AOD (ta at 670 nm) estimated in the model is poorly correlated with measurements (r = 0.27, N = 349). It is biased low by 24% as compared to AERONET. The model reproduces the prominent features in the monthly mean AOD retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS). The agreement between the model and MODIS is better over source and outflow regions (i.e., within a factor of 2).There is an underestimation of the model by up to a factor of 3 to 5 over some remote oceans. The largest contribution to global annual average AOD (0.12 at 550 nm) is from sulfate (0.043 or 35%), followed by sea salt (0.027 or 23%), dust (0.026 or 22%),OM (0.021 or 17%), and BC (0.004 or 3%). The atmospheric aerosol absorption is predominantly contributed by BC and is about 3% of the total AOD. The globally and annually averaged shortwave (SW) direct aerosol radiative perturbation (DARP) in clear-sky conditions is �2.17 Wm�2 and is about a factor of 2 larger than in all-sky conditions (�1.04 Wm�2). The net DARP (SW + LW) by all aerosols is �1.46 and �0.59 Wm�2 in clear- and all-sky conditions, respectively. Use of realistic, less absorbing in SW, optical properties for dust results in negative forcing over the dust-dominated regions.
Resumo:
We present a mathematical model describing the inward solidification of a slab, a circular cylinder and a sphere of binary melt kept below its equilibrium freezing temperature. The thermal and physical properties of the melt and solid are assumed to be identical. An asymptotic method, valid in the limit of large Stefan number is used to decompose the moving boundary problem for a pure substance into a hierarchy of fixed-domain diffusion problems. Approximate, analytical solutions are derived for the inward solidification of a slab and a sphere of a binary melt which are compared with numerical solutions of the unapproximated system. The solutions are found to agree within the appropriate asymptotic regime of large Stefan number and small time. Numerical solutions are used to demonstrate the dependence of the solidification process upon the level of impurity and other parameters. We conclude with a discussion of the solutions obtained, their stability and possible extensions and refinements of our study.
Resumo:
A drag law accounting for Ekman rotation adjacent to a flat, horizontal bou ndary is proposed for use in a plume model that is written in terms of the depth-mean velocity. The drag l aw contains a variable turning angle between the mean velocity and the drag imposed by the turbulent bound ary layer. The effect of the variable turning angle in the drag law is studied for a plume of ice shelf wat er (ISW) ascending and turning beneath an Antarctic ice shelf with draft decreasing away from the groundi ng line. As the ISW plume ascends the sloping ice shelf–ocean boundary, it can melt the ice shelf, wh ich alters the buoyancy forcing driving the plume motion. Under these conditions, the typical turning ang le is of order 10° over most of the plume area for a range of drag coefficients (the minus sign arises for th e Southern Hemisphere). The rotation of the drag with respect to the mean velocity is found to be signifi cant if the drag coefficient exceeds 0.003; in this case the plume body propagates farther along and across the b ase of the ice shelf than a plume with the standard quadratic drag law with no turning angle.
Resumo:
The area of Arctic September sea ice has diminished from about 7 million km2 in the 1990s to less than 5 million km2 in five of the past seven years, with a record minimum of 3.6 million km2 in 2012 (ref. 1). The strength of this decrease is greater than expected by the scientific community, the reasons for this are not fully understood, and its simulation is an on-going challenge for existing climate models2, 3. With growing Arctic marine activity there is an urgent demand for forecasting Arctic summer sea ice4. Previous attempts at seasonal forecasts of ice extent were of limited skill5, 6, 7, 8, 9. However, here we show that the Arctic sea-ice minimum can be accurately forecasted from melt-pond area in spring. We find a strong correlation between the spring pond fraction and September sea-ice extent. This is explained by a positive feedback mechanism: more ponds reduce the albedo; a lower albedo causes more melting; more melting increases pond fraction. Our results help explain the acceleration of Arctic sea-ice decrease during the past decade. The inclusion of our new melt-pond model10 promises to improve the skill of future forecast and climate models in Arctic regions and beyond.