130 resultados para Katherine Parsons
Resumo:
The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoy1-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known shout the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface. suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of H-1-POPC on D2O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air water interface leading to the formation of OH radicals. the highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation or oxidized lipids with shorter alkyl tails.
Resumo:
Infant survival and the development of secure and cooperative relationships are central to the future of the species. In humans, this relies heavily on the evolving early parent–infant social and affective relationship. While much is known about the behavioural and psychological components of this relationship, relatively little is known about the underlying functional neuroanatomy. Affective and social neuroscience has helped to describe the main adult brain networks involved, but has so far engaged very little with developmental findings. In this review, we seek to highlight future avenues for research by providing a coherent framework for describing the parent–infant relationship over the first 18 months. We provide an outline of the evolving nature of the relationship, starting with basic orienting and recognition processes, and culminating in the infant's attainment of higher socio-emotional and cognitive capacities. Key social and affective interactions, such as communication, cooperative play and the establishment of specific attachments propel the development of the parent–infant relationship. We summarise our current knowledge of the developing infant brain in terms of structure and function, and how these relate to the emergent abilities necessary for the formation of a secure and cooperative relationship with parents or other caregivers. Important roles have been found for brain regions including the orbitofrontal, cingulate, and insular cortices in parent–infant interactions, but it has become clear that much more information is needed about the developmental time course and connectivity of these regions.
Resumo:
Many natural and technological applications generate time ordered sequences of networks, defined over a fixed set of nodes; for example time-stamped information about ‘who phoned who’ or ‘who came into contact with who’ arise naturally in studies of communication and the spread of disease. Concepts and algorithms for static networks do not immediately carry through to this dynamic setting. For example, suppose A and B interact in the morning, and then B and C interact in the afternoon. Information, or disease, may then pass from A to C, but not vice versa. This subtlety is lost if we simply summarize using the daily aggregate network given by the chain A-B-C. However, using a natural definition of a walk on an evolving network, we show that classic centrality measures from the static setting can be extended in a computationally convenient manner. In particular, communicability indices can be computed to summarize the ability of each node to broadcast and receive information. The computations involve basic operations in linear algebra, and the asymmetry caused by time’s arrow is captured naturally through the non-mutativity of matrix-matrix multiplication. Illustrative examples are given for both synthetic and real-world communication data sets. We also discuss the use of the new centrality measures for real-time monitoring and prediction.