48 resultados para K-functional
Resumo:
Objective Sustained attention problems are common in people with autism spectrum disorder (ASD) and may have significant implications for the diagnosis and management of ASD and associated comorbidities. Furthermore, ASD has been associated with atypical structural brain development. The authors used functional MRI to investigate the functional brain maturation of attention between childhood and adulthood in people with ASD. Method Using a parametrically modulated sustained attention/vigilance task, the authors examined brain activation and its linear correlation with age between childhood and adulthood in 46 healthy male adolescents and adults (ages 11–35 years) with ASD and 44 age- and IQ-matched typically developing comparison subjects. Results Relative to the comparison group, the ASD group had significantly poorer task performance and significantly lower activation in inferior prefrontal cortical, medial prefrontal cortical, striato-thalamic, and lateral cerebellar regions. A conjunction analysis of this analysis with group differences in brain-age correlations showed that the comparison group, but not the ASD group, had significantly progressively increased activation with age in these regions between childhood and adulthood, suggesting abnormal functional brain maturation in ASD. Several regions that showed both abnormal activation and functional maturation were associated with poorer task performance and clinical measures of ASD and inattention. Conclusions The results provide first evidence that abnormalities in sustained attention networks in individuals with ASD are associated with underlying abnormalities in the functional brain maturation of these networks between late childhood and adulthood.
Resumo:
Dyspnea is the major source of disability in chronic obstructive pulmonary disease (COPD). In COPD, environmental cues (e.g. the prospect of having to climb stairs) become associated with dyspnea, and may trigger dyspnea even before physical activity commences. We hypothesised that brain activation relating to such cues would be different between COPD patients and healthy controls, reflecting greater engagement of emotional mechanisms in patients. Methods: Using FMRI, we investigated brain responses to dyspnea-related word cues in 41 COPD patients and 40 healthy age-matched controls. We combined these findings with scores of self-report questionnaires thus linking the FMRI task with clinically relevant measures. This approach was adapted from studies in pain that enables identification of brain networks responsible for pain processing despite absence of a physical challenge. Results: COPD patients demonstrate activation in the medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC) which correlated with the visual analogue scale (VAS) response to word cues. This activity independently correlated with patient-reported questionnaires of depression, fatigue and dyspnea vigilance. Activation in the anterior insula, lateral prefrontal cortex (lPFC) and precuneus correlated with the VAS dyspnea scale but not the questionnaires. Conclusions: Our findings suggest that engagement of the brain's emotional circuitry is important for interpretation of dyspnea-related cues in COPD, and is influenced by depression, fatigue, and vigilance. A heightened response to salient cues is associated with increased symptom perception in chronic pain and asthma, and our findings suggest such mechanisms may be relevant in COPD.
Resumo:
Climatic and land use changes have significant consequences for the distribution of tree species, both through natural dispersal processes and following management prescriptions. Responses to these changes will be expressed most strongly in seedlings near current species range boundaries. In northern temperate forest ecosystems, where changes are already being observed, ectomycorrhizal fungi contribute significantly to successful tree establishment. We hypothesised that communities of fungal symbionts might therefore play a role in facilitating, or limiting, host seedling range expansion. To test this hypothesis, ectomycorrhizal communities of interior Douglas-fir and interior lodgepole pine seedlings were analysed in a common greenhouse environment following growth in five soils collected along an ecosystem gradient. Currently, Douglas-fir’s natural distribution encompasses three of the five soils, whereas lodgepole pine’s extends much further north. Host filtering was evident amongst the 29 fungal species encountered: 7 were shared, 9 exclusive to Douglas-fir and 13 exclusive to lodgepole pine. Seedlings of both host species formed symbioses with each soil fungal community, thus Douglas-fir did so even where those soils came from outside its current distribution. However, these latter communities displayed significant taxonomic and functional differences to those found within the host distribution, indicative of habitat filtering. In contrast, lodgepole pine fungal communities displayed high functional similarity across the soil gradient. Taxonomic and/or functional shifts in Douglas-fir fungal communities may prove ecologically significant during the predicted northward migration of this species; especially in combination with changes in climate and management operations, such as seed transfer across geographical regions for forestry purposes.