93 resultados para Iron homeostasis
Resumo:
1. Female Wistar rats were given an adequate-zinc (60 μg/g) or low-Zn (7 μg/g) diet for a minimum of 2 weeks and then mated. They were then either continued on the same diets (+Zn –Fe or –Zn –Fe) or given similar diets supplemented with four times the normal level of iron (+Zn + Fe or –Zn + Fe). The day before parturition they were killed and the fetuses removed and analysed. 2. There were no differences in numbers of fetuses or the number of resorption sites. In the absence of Fe supplementation, the mean fetal wet weight was significantly less (P < 0.05) in the low-Zn group but there was no effect of Zn in the two Fe-supplemented groups. The addition of Fe significantly decreased (P < 0.05) the mean fetal wet weight in the adequate-Zn groups but had no effect in the low-Zn groups. There were no differences in fetal dry weight, fat, protein or DNA content. Both Fe-supplemented groups produced fetuses of higher Fe concentration (P < 0.01), and mothers with higher bone Fe-concentration (P < 0.01) compared with the non-supplemented groups. The low-Zn groups produced fetuses of lower Zn concentration (P < 0,001) than the adequate-Zn groups but there was no effect on maternal bone Zn concentration. 3. It was concluded that Fe-supplements did not adversely affect fetal growth from mothers given a low-Zn diet, but the addition of Zn to the unsupplemented diet increased fetal wet weight. These findings were not accompanied by any other differences in fetal composition or dry weight, and do not therefore lend support to the suggestion of an Fe-Zn interaction.
Resumo:
Ribonucleotide reductases supply cells with their deoxyribonucleotides. Three enzyme types are known, classes I, II and III. Class II enzymes are anaerobic whereas class I enzymes are aerobic, and so class I and II enzymes are often produced by the same organism under opposing oxygen regimes. Escherichia coli contains two types of class I enzyme (Ia and Ib) with the Fe-dependent Ia enzyme (NrdAB) performing the major role aerobically, leaving the purpose of the Ib enzyme (NrdEF) unclear. Several papers have recently focused on the class Ib enzymes showing that they are Mn (rather than Fe) dependent and suggesting that the E. coli NrdEF may function under redox-stress conditions. A paper published in this issue of Molecular Microbiology from James Imlay's group confirms that this unexplained NrdEF Ib enzyme is Mn-dependent, but shows that it does not substitute for NrdAB during redox stress. Instead, a role during iron restriction is demonstrated. Thus, the purpose of NrdEF (and possibly other class Ib enzymes) is to enhance growth under aerobic, low-iron conditions, and to functionally replace the Fe-dependent NrdAB when iron is unavailable. This finding reveals a new mechanism by which bacteria adjust to life under iron deprivation.
Resumo:
Bacterioferritin (BFR) from Escherichia coli is a member of the ferritin family of iron storage proteins and has the capacity to store very large amounts of iron as an Fe(3+) mineral inside its central cavity. The ability of organisms to tap into their cellular stores in times of iron deprivation requires that iron must be released from ferritin mineral stores. Currently, relatively little is known about the mechanisms by which this occurs, particularly in prokaryotic ferritins. Here we show that the bis-Met-coordinated heme groups of E. coli BFR, which are not found in other members of the ferritin family, play an important role in iron release from the BFR iron biomineral: kinetic iron release experiments revealed that the transfer of electrons into the internal cavity is the rate-limiting step of the release reaction and that the rate and extent of iron release were significantly increased in the presence of heme. Despite previous reports that a high affinity Fe(2+) chelator is required for iron release, we show that a large proportion of BFR core iron is released in the absence of such a chelator and further that chelators are not passive participants in iron release reactions. Finally, we show that the catalytic ferroxidase center, which is central to the mechanism of mineralization, is not involved in iron release; thus, core mineralization and release processes utilize distinct pathways.
Resumo:
Bacteria commonly utilise a unique type of transporter, called Feo, to specifically acquire the ferrous (Fe2+) form of iron from their environment. Enterobacterial Feo systems are composed of three proteins: FeoA, a small, soluble SH3-domain protein probably located in the cytosol; FeoB, a large protein with a cytosolic N-terminal G-protein domain and a C-terminal integral inner-membrane domain containing two 'Gate' motifs which likely functions as the Fe2+ permease; and FeoC, a small protein apparently functioning as an [Fe-S]-dependent transcriptional repressor. We provide a review of the current literature combined with a bioinformatic assessment of bacterial Feo systems showing how they exhibit common features, as well as differences in organisation and composition which probably reflect variations in mechanisms employed and function.
Resumo:
[Cu2(μO2CCH3)4(H2O)2], [CuCO3·Cu(OH)2], [CoSO4·7H2O], [Co((+)-tartrate)], and [FeSO4·7H2O] react with excess racemic (±)- 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate {(±)-PhosH} to give mononuclear CuII, CoII and FeII products. The cobalt product, [Co(CH3OH)4(H2O)2]((+)-Phos)((−)-Phos) ·2CH3OH·H2O (7), has been identified by X-ray diffraction. The high-spin, octahedral CoII atom is ligated by four equatorial methanol molecules and two axial water molecules. A (+)- and a (−)-Phos− ion are associated with each molecule of the complex but are not coordinated to the metal centre. For the other CoII, CuII and FeII samples of similar formulation to (7) it is also thought that the Phos− ions are not bonded directly to the metal. When some of the CuII and CoII samples are heated under high vacuum there is evidence that the Phos− ions are coordinated directly to the metals in the products.
Resumo:
1,1′-Diacetylferrocene reacts with neat hydrate over a period of 72 h at 20°C to give the dihydrazone [H2NN(Me)CC5H4FeC5H4C(Me)NNH2] (6) in almost quantitative yield. Either prolonging the reaction time or reacting 6 with fresh hydrazine causes the iron to be stripped from the metallocene and bis(hydrazine)bis(hydrazinecarboxylato-N′,O) iron(II), [Fe(N2H4)2(OOCNHNH2)2] (11), crystallizes. In the presence of Ba2+ or Mo2+ ions two molecules of complex 6 react to give the cyclic diazine [N(Me)CC5H4FeC5H4C (Me)N]2 (7) in high yield. Hydrazine is liberated in this reaction. Complexes 6 and 11 have been characterized crystallographically. The cyclic voltammograms of complexes 6 and 7 contain essentially non-reversible oxidation peaks.
Resumo:
Reactions of [Fe3(CO)12] with diaryltin species SnR2(R1= 2,4,6-triisopropylphenyl, R2= 2,6-diethylphenyl, R3= pentamethylphenyl) and with Sn[CH(PPh2)2]2 have been investigated. The tin reagents SnR2(R = R1 or R2) reacted under mild conditions to give in moderate yields the trinuclear species [Fe2(CO)8(µ-SnR12)]1 or [Fe2(CO)8(µ-SnR22)]2, as orange-red crystalline solids, which decompose in air on prolonged exposure. The compound [Fe2(CO)8(µ-SnR42)]3(R4= 2,4,6-triphenylphenyl) can be similarly obtained. Prolonged treatment of the carbonyl with the novel tin reagent SnR32, by contrast, afforded the known compound spiro-[(OC)8Fe2SnFe2(CO)8]4 for which data are briefly reported. Reactions with tin or lead reagents M[CH(PPh2)2]2(M = Sn or Pb) afforded [Fe2(CO)6(µ-CO)(µ-dppm)][dppm = 1,2-bis(diphenylphosphino)methane] rapidly and almost quantitatively. Full crystal and molecular structural data are reported for [Fe2(CO)8(µ-SnR12)] and [Fe2(CO)8(µ-SnR22)]. Mössbauer data are also presented for compounds 1–3, and interpreted in terms of the structural data for these and other systems.