52 resultados para Intention-based models
Resumo:
The ability of four operational weather forecast models [ECMWF, Action de Recherche Petite Echelle Grande Echelle model (ARPEGE), Regional Atmospheric Climate Model (RACMO), and Met Office] to generate a cloud at the right location and time (the cloud frequency of occurrence) is assessed in the present paper using a two-year time series of observations collected by profiling ground-based active remote sensors (cloud radar and lidar) located at three different sites in western Europe (Cabauw. Netherlands; Chilbolton, United Kingdom; and Palaiseau, France). Particular attention is given to potential biases that may arise from instrumentation differences (especially sensitivity) from one site to another and intermittent sampling. In a second step the statistical properties of the cloud variables involved in most advanced cloud schemes of numerical weather forecast models (ice water content and cloud fraction) are characterized and compared with their counterparts in the models. The two years of observations are first considered as a whole in order to evaluate the accuracy of the statistical representation of the cloud variables in each model. It is shown that all models tend to produce too many high-level clouds, with too-high cloud fraction and ice water content. The midlevel and low-level cloud occurrence is also generally overestimated, with too-low cloud fraction but a correct ice water content. The dataset is then divided into seasons to evaluate the potential of the models to generate different cloud situations in response to different large-scale forcings. Strong variations in cloud occurrence are found in the observations from one season to the same season the following year as well as in the seasonal cycle. Overall, the model biases observed using the whole dataset are still found at seasonal scale, but the models generally manage to well reproduce the observed seasonal variations in cloud occurrence. Overall, models do not generate the same cloud fraction distributions and these distributions do not agree with the observations. Another general conclusion is that the use of continuous ground-based radar and lidar observations is definitely a powerful tool for evaluating model cloud schemes and for a responsive assessment of the benefit achieved by changing or tuning a model cloud
Resumo:
In this contribution we aim at anchoring Agent-Based Modeling (ABM) simulations in actual models of human psychology. More specifically, we apply unidirectional ABM to social psychological models using low level agents (i.e., intra-individual) to examine whether they generate better predictions, in comparison to standard statistical approaches, concerning the intentions of performing a behavior and the behavior. Moreover, this contribution tests to what extent the predictive validity of models of attitude such as the Theory of Planned Behavior (TPB) or Model of Goal-directed Behavior (MGB) depends on the assumption that peoples’ decisions and actions are purely rational. Simulations were therefore run by considering different deviations from rationality of the agents with a trembling hand method. Two data sets concerning respectively the consumption of soft drinks and physical activity were used. Three key findings emerged from the simulations. First, compared to standard statistical approach the agent-based simulation generally improves the prediction of behavior from intention. Second, the improvement in prediction is inversely proportional to the complexity of the underlying theoretical model. Finally, the introduction of varying degrees of deviation from rationality in agents’ behavior can lead to an improvement in the goodness of fit of the simulations. By demonstrating the potential of ABM as a complementary perspective to evaluating social psychological models, this contribution underlines the necessity of better defining agents in terms of psychological processes before examining higher levels such as the interactions between individuals.
Resumo:
Government targets for CO2 reductions are being progressively tightened, the Climate Change Act set the UK target as an 80% reduction by 2050 on 1990 figures. The residential sector accounts for about 30% of emissions. This paper discusses current modelling techniques in the residential sector: principally top-down and bottom-up. Top-down models work on a macro-economic basis and can be used to consider large scale economic changes; bottom-up models are detail rich to model technological changes. Bottom-up models demonstrate what is technically possible. However, there are differences between the technical potential and what is likely given the limited economic rationality of the typical householder. This paper recommends research to better understand individuals’ behaviour. Such research needs to include actual choices, stated preferences and opinion research to allow a detailed understanding of the individual end user. This increased understanding can then be used in an agent based model (ABM). In an ABM, agents are used to model real world actors and can be given a rule set intended to emulate the actions and behaviours of real people. This can help in understanding how new technologies diffuse. In this way a degree of micro-economic realism can be added to domestic carbon modelling. Such a model should then be of use for both forward projections of CO2 and to analyse the cost effectiveness of various policy measures.
Resumo:
Abstract: Following a workshop exercise, two models, an individual-based landscape model (IBLM) and a non-spatial life-history model were used to assess the impact of a fictitious insecticide on populations of skylarks in the UK. The chosen population endpoints were abundance, population growth rate, and the chances of population persistence. Both models used the same life-history descriptors and toxicity profiles as the basis for their parameter inputs. The models differed in that exposure was a pre-determined parameter in the life-history model, but an emergent property of the IBLM, and the IBLM required a landscape structure as an input. The model outputs were qualitatively similar between the two models. Under conditions dominated by winter wheat, both models predicted a population decline that was worsened by the use of the insecticide. Under broader habitat conditions, population declines were only predicted for the scenarios where the insecticide was added. Inputs to the models are very different, with the IBLM requiring a large volume of data in order to achieve the flexibility of being able to integrate a range of environmental and behavioural factors. The life-history model has very few explicit data inputs, but some of these relied on extensive prior modelling needing additional data as described in Roelofs et al.(2005, this volume). Both models have strengths and weaknesses; hence the ideal approach is that of combining the use of both simple and comprehensive modeling tools.