128 resultados para Inovation models in nets
Resumo:
This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. The median global primary OA (POA) source strength is 56 Tg a−1 (range 34–144 Tg a−1) and the median SOA source strength (natural and anthropogenic) is 19 Tg a−1 (range 13–121 Tg a−1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a−1 (range 16–121 Tg a−1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a−1; range 13–20 Tg a−1, with one model at 37 Tg a−1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6–2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8–9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a−1 (range 28–209 Tg a−1), which is on average 85% of the total OA deposition. Fine aerosol organic carbon (OC) and OA observations from continuous monitoring networks and individual field campaigns have been used for model evaluation. At urban locations, the model–observation comparison indicates missing knowledge on anthropogenic OA sources, both strength and seasonality. The combined model–measurements analysis suggests the existence of increased OA levels during summer due to biogenic SOA formation over large areas of the USA that can be of the same order of magnitude as the POA, even at urban locations, and contribute to the measured urban seasonal pattern. Global models are able to simulate the high secondary character of OA observed in the atmosphere as a result of SOA formation and POA aging, although the amount of OA present in the atmosphere remains largely underestimated, with a mean normalized bias (MNB) equal to −0.62 (−0.51) based on the comparison against OC (OA) urban data of all models at the surface, −0.15 (+0.51) when compared with remote measurements, and −0.30 for marine locations with OC data. The mean temporal correlations across all stations are low when compared with OC (OA) measurements: 0.47 (0.52) for urban stations, 0.39 (0.37) for remote stations, and 0.25 for marine stations with OC data. The combination of high (negative) MNB and higher correlation at urban stations when compared with the low MNB and lower correlation at remote sites suggests that knowledge about the processes that govern aerosol processing, transport and removal, on top of their sources, is important at the remote stations. There is no clear change in model skill with increasing model complexity with regard to OC or OA mass concentration. However, the complexity is needed in models in order to distinguish between anthropogenic and natural OA as needed for climate mitigation, and to calculate the impact of OA on climate accurately.
Resumo:
Simulation of the lifting of dust from the planetary surface is of substantially greater importance on Mars than on Earth, due to the fundamental role that atmospheric dust plays in the former’s climate, yet the dust emission parameterisations used to date in martian global climate models (MGCMs) lag, understandably, behind their terrestrial counterparts in terms of sophistication. Recent developments in estimating surface roughness length over all martian terrains and in modelling atmospheric circulations at regional to local scales (less than O(100 km)) presents an opportunity to formulate an improved wind stress lifting parameterisation. We have upgraded the conventional scheme by including the spatially varying roughness length in the lifting parameterisation in a fully consistent manner (thereby correcting a possible underestimation of the true threshold level for wind stress lifting), and used a modification to account for deviations from neutral stability in the surface layer. Following these improvements, it is found that wind speeds at typical MGCM resolution never reach the lifting threshold at most gridpoints: winds fall particularly short in the southern midlatitudes, where mean roughness is large. Sub-grid scale variability, manifested in both the near-surface wind field and the surface roughness, is then considered, and is found to be a crucial means of bridging the gap between model winds and thresholds. Both forms of small-scale variability contribute to the formation of dust emission ‘hotspots’: areas within the model gridbox with particularly favourable conditions for lifting, namely a smooth surface combined with strong near-surface gusts. Such small-scale emission could in fact be particularly influential on Mars, due both to the intense positive radiative feedbacks that can drive storm growth and a strong hysteresis effect on saltation. By modelling this variability, dust lifting is predicted at the locations at which dust storms are frequently observed, including the flushing storm sources of Chryse and Utopia, and southern midlatitude areas from which larger storms tend to initiate, such as Hellas and Solis Planum. The seasonal cycle of emission, which includes a double-peaked structure in northern autumn and winter, also appears realistic. Significant increases to lifting rates are produced for any sensible choices of parameters controlling the sub-grid distributions used, but results are sensitive to the smallest scale of variability considered, which high-resolution modelling suggests should be O(1 km) or less. Use of such models in future will permit the use of a diagnosed (rather than prescribed) variable gustiness intensity, which should further enhance dust lifting in the southern hemisphere in particular.
Resumo:
Abstract. Three influential theoretical models of OCD focus upon the cognitive factors of inflated responsibility (Salkovskis, 1985), thought-action fusion (Rachman, 1993) and meta-cognitive beliefs (Wells and Matthews, 1994). Little is known about the relevance of these models in adolescents or about the nature of any direct or mediating relationships between these variables and OCD symptoms. This was a cross-sectional correlational design with 223 non-clinical adolescents aged 13 to 16 years. All participants completed questionnaires measuring inflated responsibility, thought-action fusion, meta-cognitive beliefs and obsessive-compulsive symptoms. Inflated responsibility, thought-action fusion and metacognitive beliefs were significantly associated with higher levels of obsessive-compulsive symptoms. These variables accounted for 35% of the variance in obsessive-compulsive symptoms, with inflated responsibility and meta-cognitive beliefs both emerging as significant independent predictors. Inflated responsibility completely mediated the effect of thoughtaction fusion and partially mediated the effect of meta-cognitive beliefs. Support for the downward extension of cognitive models to understanding OCD in a younger population was shown. Findings suggest that inflated responsibility and meta-cognitive beliefs may be particularly important cognitive concepts in OCD. Methodological limitations must be borne in mind and future research is needed to replicate and extend findings in clinical samples. Keywords: Obsessive compulsive disorder, adolescents, cognitive models.
Resumo:
A new formulation of a pose refinement technique using ``active'' models is described. An error term derived from the detection of image derivatives close to an initial object hypothesis is linearised and solved by least squares. The method is particularly well suited to problems involving external geometrical constraints (such as the ground-plane constraint). We show that the method is able to recover both the pose of a rigid model, and the structure of a deformable model. We report an initial assessment of the performance and cost of pose and structure recovery using the active model in comparison with our previously reported ``passive'' model-based techniques in the context of traffic surveillance. The new method is more stable, and requires fewer iterations, especially when the number of free parameters increases, but shows somewhat poorer convergence.
Resumo:
Different optimization methods can be employed to optimize a numerical estimate for the match between an instantiated object model and an image. In order to take advantage of gradient-based optimization methods, perspective inversion must be used in this context. We show that convergence can be very fast by extrapolating to maximum goodness-of-fit with Newton's method. This approach is related to methods which either maximize a similar goodness-of-fit measure without use of gradient information, or else minimize distances between projected model lines and image features. Newton's method combines the accuracy of the former approach with the speed of convergence of the latter.
Resumo:
The classical computer vision methods can only weakly emulate some of the multi-level parallelisms in signal processing and information sharing that takes place in different parts of the primates’ visual system thus enabling it to accomplish many diverse functions of visual perception. One of the main functions of the primates’ vision is to detect and recognise objects in natural scenes despite all the linear and non-linear variations of the objects and their environment. The superior performance of the primates’ visual system compared to what machine vision systems have been able to achieve to date, motivates scientists and researchers to further explore this area in pursuit of more efficient vision systems inspired by natural models. In this paper building blocks for a hierarchical efficient object recognition model are proposed. Incorporating the attention-based processing would lead to a system that will process the visual data in a non-linear way focusing only on the regions of interest and hence reducing the time to achieve real-time performance. Further, it is suggested to modify the visual cortex model for recognizing objects by adding non-linearities in the ventral path consistent with earlier discoveries as reported by researchers in the neuro-physiology of vision.
Resumo:
G-Rex is light-weight Java middleware that allows scientific applications deployed on remote computer systems to be launched and controlled as if they are running on the user's own computer. G-Rex is particularly suited to ocean and climate modelling applications because output from the model is transferred back to the user while the run is in progress, which prevents the accumulation of large amounts of data on the remote cluster. The G-Rex server is a RESTful Web application that runs inside a servlet container on the remote system, and the client component is a Java command line program that can easily be incorporated into existing scientific work-flow scripts. The NEMO and POLCOMS ocean models have been deployed as G-Rex services in the NERC Cluster Grid, and G-Rex is the core grid middleware in the GCEP and GCOMS e-science projects.
Resumo:
During the twentieth century sea surface temperatures in the Atlantic Ocean exhibited prominent multidecadal variations. The source of such variations has yet to be rigorously established—but the question of their impact on climate can be investigated. Here we report on a set of multimodel experiments to examine the impact of patterns of warming in the North Atlantic, and cooling in the South Atlantic, derived from observations, that is characteristic of the positive phase of the Atlantic Multidecadal Oscillation (AMO). The experiments were carried out with six atmospheric General Circulation Models (including two versions of one model), and a major goal was to assess the extent to which key climate impacts are consistent between the different models. The major climate impacts are found over North and South America, with the strongest impacts over land found over the United States and northern parts of South America. These responses appear to be driven by a combination of an off-equatorial Gill response to diabatic heating over the Caribbean due to increased rainfall within the region and a Northward shift in the Inter Tropical Convergence Zone (ITCZ) due to the anomalous cross-equatorial SST gradient. The majority of the models show warmer US land temperatures and reduced Mean Sea Level Pressure during summer (JJA) in response to a warmer North Atlantic and a cooler South Atlantic, in line with observations. However the majority of models show no significant impact on US rainfall during summer. Over northern South America, all models show reduced rainfall in southern hemisphere winter (JJA), whilst in Summer (DJF) there is a generally an increase in rainfall. However, there is a large spread amongst the models in the magnitude of the rainfall anomalies over land. Away from the Americas, there are no consistent significant modelled responses. In particular there are no significant changes in the North Atlantic Oscillation (NAO) over the North Atlantic and Europe in Winter (DJF). Additionally, the observed Sahel drying signal in African rainfall is not seen in the modelled responses. Suggesting that, in contrast to some studies, the Atlantic Multidecadal Oscillation was not the primary driver of recent reductions in Sahel rainfall.
Resumo:
A time series of the observed transport through an array of moorings across the Mozambique Channel is compared with that of six model runs with ocean general circulation models. In the observations, the seasonal cycle cannot be distinguished from red noise, while this cycle is dominant in the transport of the numerical models. It is found, however, that the seasonal cycles of the observations and numerical models are similar in strength and phase. These cycles have an amplitude of 5 Sv and a maximum in September, and can be explained by the yearly variation of the wind forcing. The seasonal cycle in the models is dominant because the spectral density at other frequencies is underrepresented. Main deviations from the observations are found at depths shallower than 1500 m and in the 5/y–6/y frequency range. Nevertheless, the structure of eddies in the models is close to the observed eddy structure. The discrepancy is found to be related to the formation mechanism and the formation position of the eddies. In the observations, eddies are frequently formed from an overshooting current near the mooring section, as proposed by Ridderinkhof and de Ruijter (2003) and Harlander et al. (2009). This causes an alternation of events at the mooring section, varying between a strong southward current, and the formation and passing of an eddy. This results in a large variation of transport in the frequency range of 5/y–6/y. In the models, the eddies are formed further north and propagate through the section. No alternation similar to the observations is observed, resulting in a more constant transport.