250 resultados para INFRARED FILTER SET


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Robert–Asselin time filter is widely used in numerical models of weather and climate. It successfully suppresses the spurious computational mode associated with the leapfrog time-stepping scheme. Unfortunately, it also weakly suppresses the physical mode and severely degrades the numerical accuracy. These two concomitant problems are shown to occur because the filter does not conserve the mean state, averaged over the three time slices on which it operates. The author proposes a simple modification to the Robert–Asselin filter, which does conserve the three-time-level mean state. When used in conjunction with the leapfrog scheme, the modification vastly reduces the impacts on the physical mode and increases the numerical accuracy for amplitude errors by two orders, yielding third-order accuracy. The modified filter could easily be incorporated into existing general circulation models of the atmosphere and ocean. In principle, it should deliver more faithful simulations at almost no additional computational expense. Alternatively, it may permit the use of longer time steps with no loss of accuracy, reducing the computational expense of a given simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new spectral-based approach is presented to find orthogonal patterns from gridded weather/climate data. The method is based on optimizing the interpolation error variance. The optimally interpolated patterns (OIP) are then given by the eigenvectors of the interpolation error covariance matrix, obtained using the cross-spectral matrix. The formulation of the approach is presented, and the application to low-dimension stochastic toy models and to various reanalyses datasets is performed. In particular, it is found that the lowest-frequency patterns correspond to largest eigenvalues, that is, variances, of the interpolation error matrix. The approach has been applied to the Northern Hemispheric (NH) and tropical sea level pressure (SLP) and to the Indian Ocean sea surface temperature (SST). Two main OIP patterns are found for the NH SLP representing respectively the North Atlantic Oscillation and the North Pacific pattern. The leading tropical SLP OIP represents the Southern Oscillation. For the Indian Ocean SST, the leading OIP pattern shows a tripole-like structure having one sign over the eastern and north- and southwestern parts and an opposite sign in the remaining parts of the basin. The pattern is also found to have a high lagged correlation with the Niño-3 index with 6-months lag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As improvements to the optical design of spectrometer and radiometer instruments evolve with advances in detector sensitivity, use of focal plane detector arrays and innovations in adaptive optics for large high altitude telescopes, interest in mid-infrared astronomy and remote sensing applications have been areas of progressive research in recent years. This research has promoted a number of developments in infrared coating performance, particularly by placing increased demands on the spectral imaging requirements of filters to precisely isolate radiation between discrete wavebands and improve photometric accuracy. The spectral design and construction of multilayer filters to accommodate these developments has subsequently been an area of challenging thin-film research, to achieve high spectral positioning accuracy, environmental durability and aging stability at cryogenic temperatures, whilst maximizing the far-infrared performance. In this paper we examine the design and fabrication of interference filters in instruments that utilize the mid-infrared N-band (6-15 µm) and Q-band (16-28 µm) atmospheric windows, together with a rationale for the selection of materials, deposition process, spectral measurements and assessment of environmental durability performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calculations of the absorption of solar radiation by atmospheric gases, and water vapor in particular, are dependent on the quality of databases of spectral line parameters. There has been increasing scrutiny of databases such as HITRAN in recent years, but this has mostly been performed on a band-by-band basis. We report nine high-spectral-resolution (0.03 cm(-1)) measurements of the solar radiation reaching the surface in southern England over the wave number range 2000 to 12,500 cm(-1) (0.8 to 5 mm) that allow a unique assessment of the consistency of the spectral line databases over this entire spectral region. The data are assessed in terms of the modeled water vapor column that is required to bring calculations and observations into agreement; for an entirely consistent database, this water vapor column should be constant with frequency. For the HITRAN01 database, the spread in water vapor column is about 11%, with distinct shifts between different spectral regions. The HITRAN04 database is in significantly better agreement (about 5% spread) in the completely updated 3000 to 8000 cm(-1) spectral region, but inconsistencies between individual spectral regions remain: for example, in the 8000 to 9500 cm(-1) spectral region, the results indicate an 18% (+/- 1%) underestimate in line intensities with respect to the 3000 to 8000 cm(-1) region. These measurements also indicate the impact of isotopic fractionation of water vapor in the 2500 to 2900 cm(-1) range, where HDO lines dominate over the lines of the most abundant isotope of H2O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness. 2. A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants’ overall reproductive success and long-term survival. Understanding the relationship between plant population size and⁄ or isolation and pollination limitation is of fundamental importance for plant conservation. 3. Weexamined flower visitation and seed set of 10 different plant species fromfive European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation. 4. Wefound evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations. 5. Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant–pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the past 15 years, a number of initiatives have been undertaken at national level to develop ocean forecasting systems operating at regional and/or global scales. The co-ordination between these efforts has been organized internationally through the Global Ocean Data Assimilation Experiment (GODAE). The French MERCATOR project is one of the leading participants in GODAE. The MERCATOR systems routinely assimilate a variety of observations such as multi-satellite altimeter data, sea-surface temperature and in situ temperature and salinity profiles, focusing on high-resolution scales of the ocean dynamics. The assimilation strategy in MERCATOR is based on a hierarchy of methods of increasing sophistication including optimal interpolation, Kalman filtering and variational methods, which are progressively deployed through the Syst`eme d’Assimilation MERCATOR (SAM) series. SAM-1 is based on a reduced-order optimal interpolation which can be operated using ‘altimetry-only’ or ‘multi-data’ set-ups; it relies on the concept of separability, assuming that the correlations can be separated into a product of horizontal and vertical contributions. The second release, SAM-2, is being developed to include new features from the singular evolutive extended Kalman (SEEK) filter, such as three-dimensional, multivariate error modes and adaptivity schemes. The third one, SAM-3, considers variational methods such as the incremental four-dimensional variational algorithm. Most operational forecasting systems evaluated during GODAE are based on least-squares statistical estimation assuming Gaussian errors. In the framework of the EU MERSEA (Marine EnviRonment and Security for the European Area) project, research is being conducted to prepare the next-generation operational ocean monitoring and forecasting systems. The research effort will explore nonlinear assimilation formulations to overcome limitations of the current systems. This paper provides an overview of the developments conducted in MERSEA with the SEEK filter, the Ensemble Kalman filter and the sequential importance re-sampling filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotational structure has been resolved and analyzed in two of the infrared‐active perpendicular bands of C2H4 vapor: the Type b fundamental band, ν10, at 826 cm—1, and the Type c fundamental band, ν7, at 949 cm—1. Many of the individual PP and RR branch lines have been observed. The analysis has been confined to values of the quantum number K≥3, for which energy levels ethylene shows no detectable deviations from a symmetric‐top rotational structure. The analysis reveals a Coriolis interaction between ν7 and ν10, and between ν4 and ν10, and values of the Coriolis constants ζ7,10z and ζ4,10y are obtained; these are related to normal coordinate calculations for the appropriate symmetry species, and force constants are derived to fit the observed zeta constants. The band center of ν10 has been revised from the original figure of 810 cm—1 to the new value, 826 cm—1, and the inactive frequency ν4 is estimated to lie at 1023±3 cm—1, in good agreement with the previous estimate of 1027 cm—1. The change in the value of ν10 leads to a suggested change in the value of the Raman‐active fundamental ν6 from 1236 to 1222 cm—1. New combination bands have been observed at 2174 cm—1, assigned as ν3+ν10; and at 2252 cm—1, assigned as ν4+ν6; also rotational structure has been resolved and analyzed in the ν6+ν10 band at 2048 cm—1. The new data obtained for the C2H4 molecule are summarized in Table XII, with all of the other data presently available on the vibrational and rotational constants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High resolution infrared spectra of the ν9 and ν10 perpendicular fundamentals of the allene molecule are reported, in which the J structure in the sub-bands has been partially resolved. Analysis of the latter shows that the vibrational origin ν9 = 999 cm−1, some 35 cm−1 below previous assignments. The pronounced asymmetry in the intensity distribution of the rotational structure which this assignment implies is shown to be expected theoretically, due to the Coriolis perturbations involved, and it is interpreted in terms of the sign and magnitude of the ratio of the dipole moment derivatives in the two fundamentals. The results of this analysis are shown to be in good agreement with observations on allene-1.1-d2, where similar intensity perturbations are observed, and with an independent analysis of the ν8 band of allene-h4. The A rotational constant of allene-h4 is found to have the value 4.82 ± 0.01 cm−1, and for the molecular geometry we obtain r(CH) = 1.084 A, r(CC) = 1.308 A, and HCH = 118.4°. A partial analysis of the rotational structure of the hot bands (ν9 + ν11 − ν11) and (ν10 + ν11 − ν11) is presented; these provide an example of a strong Coriolis interaction between nearly degenerate A1A2 and B1B2 pairs of vibrational levels. Some localized rotational perturbations in the ν9 and ν10 fundamentals are also noted, and their possible interpretations are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The perturbed Hartree–Fock theory developed in the preceding paper is applied to LiH, BH, and HF, using limited basis‐set SCF–MO wavefunctions derived by previous workers. The calculated values for the force constant ke and the dipole‐moment derivative μ(1) are (experimental values in parentheses): LiH, ke  =  1.618(1.026)mdyn/Å,μ(1)  =  −18.77(−2.0±0.3)D/ÅBH,ke  =  5.199(3.032)mdyn/Å,μ(1)  =  −1.03(−)D/Å;HF,ke  =  12.90(9.651)mdyn/Å,μ(1)  =  −2.15(+1.50)D/Å. The values of the force on the proton were calculated exactly and according to the Hellmann–Feynman theorem in each case, and the discrepancies show that none of the wavefunctions used are close to the Hartree–Fock limit, so that the large errors in ke and μ(1) are not surprising. However no difficulties arose in the perturbed Hartree–Fock calculation, so that the application of the theory to more accurate wavefunctions appears quite feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared spectra of the trans and the cis isomers of nitrous acid, both HONO and DONO, have been observed in the gas phase using a Fourier transform interferometer with a resolution of about 0.05 cm−1 from 4000 to 500 cm−1. Rotational analyses are reported on eleven of the fundamentals and some overtones.