107 resultados para Hype Cycle Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have examined the atmospheric water cycle of both Polar Regions, pole wards of 60°N and 60°S, using the ERA-Interim re-analysis and high-resolution simulations with the ECHAM5 model for both the present and future climate based on the IPCC, A1B scenario, representative of the last three decades of the 21st century. The annual precipitation in ERA-Interim amounts to ~17000 km3 and is more or less the same in the Arctic and the Antarctic, but it is composed differently. In the Arctic the annual evaporation is some 8000 km3 but some 3000 km3 less in the Antarctica where the net horizontal transport is correspondingly larger. The net water transport of the model is more intense than in ERA-Interim, in the Arctic the difference is 2.5% and in the Antarctic it is 6.2%. Precipitation and net horizontal transport in the Arctic has a maximum in August and September. Evaporation peaks in June and July. The seasonal cycle is similar in Antarctica with the highest precipitation in the austral autumn. The largest net transport occurs at the end of the major extra-tropical storm tracks in the Northern Hemisphere such as the eastern Pacific and eastern north Atlantic. The variability of the model is virtually identical to that of the re-analysis and there are no changes in variability between the present climate and the climate at the end of the 21st century when normalized with the higher level of moisture. The changes from year to year are substantial with the 20 and 30-year records being generally too short to identify robust trends in the hydrological cycle. In the A1B climate scenario the strength of the water cycle increases by some 25% in the Arctic and by 19% in the Antarctica, as measured by annual precipitation. The increase in the net horizontal transport is 29% and 22% respectively, and the increase in evaporation correspondingly less. The net transport follows closely the Clausius-Clapeyron relation. There is 2 a minor change in the annual cycle of the Arctic atmospheric water cycle with the maximum transport and precipitation occurring later in the year. There is a small imbalance of some 4-6% between the net transport and precipitation minus evaporation. We suggest that this is mainly due to the fact the transport is calculated from instantaneous 6-hourly data while precipitation and evaporation is accumulated over a 6 hour period. The residual difference is proportionally similar for all experiments and hardly varies from year to year.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Myocardial repair following injury in mammals is restricted such that damaged areas are replaced by scar tissue, impairing cardiac function. MRL mice exhibit exceptional regenerative healing in an ear punch wound model. Some myocardial repair with restoration of heart function has also been reported following cryoinjury. Increased cardiomyocyte proliferation and a foetal liver stem cell population were implicated. We investigated molecular mechanisms facilitating myocardial repair in MRL mice to identify potential therapeutic targets in non-regenerative species. Methods Expressions of specific cell-cycle regulators that might account for regeneration (CDKs 1, 2, 4 and 6; cyclins A, E, D1 and B1; p21, p27 and E2F5) were compared by immunoblotting in MRL and control C57BL/6 ventricles during development. Flow cytometry was used to investigate stem cell populations in livers from foetal mice, and infarct sizes were compared in coronary artery-ligated and sham-treated MRL and C57BL/6 adult mice. Key findings No differences in the expressions of cell cycle regulators were observed between the two strains. Expressions of CD34+Sca1+ckit-, CD34+Sca1+ckit+ and CD34+Sca1-ckit+ increased in livers from C57BL/6 vs MRL mice. No differences were observed in infarct sizes, levels of fibrosis, Ki67 staining or cardiac function between MRL and C57BL/6 mice. Conclusions No intrinsic differences were observed in cell cycle control molecules or stem cell populations between MRL and control C57BL mouse hearts. Pathophysiologically relevant ischaemic injury is not repaired more efficiently in MRL myocardium, questioning the use of the MRL mouse as a reliable model for cardiac regeneration in response to pathophysiologically relevant forms of injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple self–contained theory is proposed for describing life cycles of convective systems as a discharge–recharge process. A closed description is derived for the dynamics of an ensemble of convective plumes based on an energy cycle. The system consists of prognostic equations for the cloud work function and the convective kinetic energy. The system can be closed by intro ducing a functional relationship between the convective kinetic energy and the cloud–base mass flux. The behaviour of this system is considered under a bulk simplification. Previous cloud–resolving mo delling as well as bulk statistical theories for ensemble convective systems suggest that a plausible relationship would be to assume that the convective kinetic energy is linearly proportional to the cloud–base mass flux. As a result, the system reduces to a nonlinear dynamical system with two dependent variables, the cloud–base mass flux and the cloud work function. The fully nonlinear solution of this system always represents a periodic cycle regardless of the initial condition under constant large–scale forcing. Importantly, the inclusion of energy dissipation in this model does not in itself lead the system to an equilibrium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing demand for ecosystem services, in conjunction with climate change, is expected to signif- icantly alter terrestrial ecosystems. In order to evaluate the sustainability of land and water resources, there is a need for a better understanding of the relationships between crop production, land surface characteristics and the energy and water cycles. These relationships are analysed using the Joint UK Land Environment Simulator (JULES). JULES includes the full hydrological cycle and vegetation effects on the energy, water, and carbon fluxes. However, this model currently only simulates land surface processes in natural ecosystems. An adapted version of JULES for agricultural ecosystems, called JULES-SUCROS has therefore been developed. In addition to overall model improvements, JULES-SUCROS includes a dynamic crop growth structure that fully fits within and builds upon the biogeochemical modelling framework for natural vegetation. Specific agro-ecosystem features such as the development of yield-bearing organs and the phenological cycle from sowing till harvest have been included in the model. This paper describes the structure of JULES-SUCROS and evaluates the fluxes simulated with this model against FLUXNET measurements at 6 European sites. We show that JULES-SUCROS significantly improves the correlation between simulated and observed fluxes over cropland and captures well the spatial and temporal vari- ability of the growth conditions in Europe. Simulations with JULES-SUCROS highlight the importance of vegetation structure and phenology, and the impact they have on land–atmosphere interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A global archive of high-resolution (3-hourly, 0.58 latitude–longitude grid) window (11–12 mm) brightness temperature (Tb) data from multiple satellites is being developed by the European Union Cloud Archive User Service (CLAUS) project. It has been used to construct a climatology of the diurnal cycle in convection, cloudiness, and surface temperature for all regions of the Tropics. An example of the application of the climatology to the evaluation of the climate version of the U.K. Met. Office Unified Model (UM), version HadAM3, is presented. The characteristics of the diurnal cycle described by the CLAUS data agree with previous observational studies, demonstrating the universality of the characteristics of the diurnal cycle for land versus ocean, clear sky versus convective regimes. It is shown that oceanic deep convection tends to reach its maximum in the early morning. Continental convection generally peaks in the evening, although there are interesting regional variations, indicative of the effects of complex land–sea and mountain–valley breezes, as well as the life cycle of mesoscale convective systems. A striking result from the analysis of the CLAUS data has been the extent to which the strong diurnal signal over land is spread out over the adjacent oceans, probably through gravity waves of varying depths. These coherent signals can be seen for several hundred kilometers and in some instances, such as over the Bay of Bengal, can lead to substantial diurnal variations in convection and precipitation. The example of the use of the CLAUS data in the evaluation of the Met. Office UM has demonstrated that the model has considerable difficulty in capturing the observed phase of the diurnal cycle in convection, which suggests some fundamental difficulties in the model’s physical parameterizations. Analysis of the diurnal cycle represents a powerful tool for identifying and correcting model deficiencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A partial differential equation model is developed to understand the effect that nutrient and acidosis have on the distribution of proliferating and quiescent cells and dead cell material (necrotic and apopotic) within a multicellular tumour spheroid. The rates of cell quiescence and necrosis depend upon the local nutrient and acid concentrations and quiescent cells are assumed to consume less nutrient and produce less acid than proliferating cells. Analysis of the differences in nutrient consumption and acid production by quiescent and proliferating cells shows low nutrient levels do not necessarily lead to increased acid concentration via anaerobic metabolism. Rather, it is the balance between proliferating and quiescent cells within the tumour which is important; decreased nutrient levels lead to more quiescent cells, which produce less acid than proliferating cells. We examine this effect via a sensitivity analysis which also includes a quantification of the effect that nutrient and acid concentrations have on the rates of cell quiescence and necrosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of transient climate runs simulating the last 120kyr have been carried out using FAMOUS, a fast atmosphere-ocean general circulation model (AOGCM). This is the first time such experiments have been done with a full AOGCM, providing a three-dimensional simulation of both atmosphere and ocean over this period. Our simulation thus includes internally generated temporal variability over periods from days to millennia, and physical, detailed representations of important processes such as clouds and precipitation. Although the model is fast, computational restrictions mean that the rate of change of the forcings has been increased by a factor of 10, making each experiment 12kyr long. Atmospheric greenhouse gases (GHGs), northern hemisphere ice sheets and variations in solar radiation arising from changes in the Earth's orbit are treated as forcing factors, and are applied either separately or combined in different experiments. The long-term temperature changes on Antarctica match well with reconstructions derived from ice-core data, as does variability on timescales longer than 10 kyr. Last Glacial Maximum (LGM) cooling on Greenland is reasonably well simulated, although our simulations, which lack ice-sheet meltwater forcing, do not reproduce the abrupt, millennial scale climate shifts seen in northern hemisphere climate proxies or their slower southern hemisphere counterparts. The spatial pattern of sea surface cooling at the LGM matches proxy reconstructions reasonably well. There is significant anti-correlated variability in the strengths of the Atlantic Meridional Overturning Circulation (AMOC) and the Antarctic Circumpolar Current (ACC) on timescales greater than 10kyr in our experiments. We find that GHG forcing weakens the AMOC and strengthens the ACC, whilst the presence of northern hemisphere ice-sheets strengthens the AMOC and weakens the ACC. The structure of the AMOC at the LGM is found to be sensitive to the details of the ice-sheet reconstruction used. The precessional component of the orbital forcing induces ~20kyr oscillations in the AMOC and ACC, whose amplitude is mediated by changes in the eccentricity of the Earth's orbit. These forcing influences combine, to first order, in a linear fashion to produce the mean climate and ocean variability seen in the run with all forcings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new electronic software distribution (ESD) life cycle analysis (LCA)methodology and model structure were constructed to calculate energy consumption and greenhouse gas (GHG) emissions. In order to counteract the use of high level, top-down modeling efforts, and to increase result accuracy, a focus upon device details and data routes was taken. In order to compare ESD to a relevant physical distribution alternative,physical model boundaries and variables were described. The methodology was compiled from the analysis and operational data of a major online store which provides ESD and physical distribution options. The ESD method included the calculation of power consumption of data center server and networking devices. An in-depth method to calculate server efficiency and utilization was also included to account for virtualization and server efficiency features. Internet transfer power consumption was analyzed taking into account the number of data hops and networking devices used. The power consumed by online browsing and downloading was also factored into the model. The embedded CO2e of server and networking devices was proportioned to each ESD process. Three U.K.-based ESD scenarios were analyzed using the model which revealed potential CO2e savings of 83% when ESD was used over physical distribution. Results also highlighted the importance of server efficiency and utilization methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an intercomparison and verification analysis of 20 GCMs (Global Circulation Models) included in the 4th IPCC assessment report regarding their representation of the hydrological cycle on the Danube river basin for 1961–2000 and for the 2161–2200 SRESA1B scenario runs. The basin-scale properties of the hydrological cycle are computed by spatially integrating the precipitation, evaporation, and runoff fields using the Voronoi-Thiessen tessellation formalism. The span of the model- simulated mean annual water balances is of the same order of magnitude of the observed Danube discharge of the Delta; the true value is within the range simulated by the models. Some land components seem to have deficiencies since there are cases of violation of water conservation when annual means are considered. The overall performance and the degree of agreement of the GCMs are comparable to those of the RCMs (Regional Climate Models) analyzed in a previous work, in spite of the much higher resolution and common nesting of the RCMs. The reanalyses are shown to feature several inconsistencies and cannot be used as a verification benchmark for the hydrological cycle in the Danubian region. In the scenario runs, for basically all models the water balance decreases, whereas its interannual variability increases. Changes in the strength of the hydrological cycle are not consistent among models: it is confirmed that capturing the impact of climate change on the hydrological cycle is not an easy task over land areas. Moreover, in several cases we find that qualitatively different behaviors emerge among the models: the ensemble mean does not represent any sort of average model, and often it falls between the models’ clusters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms involved in Atlantic meridional overturning circulation (AMOC) decadal variability and predictability over the last 50 years are analysed in the IPSL–CM5A–LR model using historical and initialised simulations. The initialisation procedure only uses nudging towards sea surface temperature anomalies with a physically based restoring coefficient. When compared to two independent AMOC reconstructions, both the historical and nudged ensemble simulations exhibit skill at reproducing AMOC variations from 1977 onwards, and in particular two maxima occurring respectively around 1978 and 1997. We argue that one source of skill is related to the large Mount Agung volcanic eruption starting in 1963, which reset an internal 20-year variability cycle in the North Atlantic in the model. This cycle involves the East Greenland Current intensity, and advection of active tracers along the subpolar gyre, which leads to an AMOC maximum around 15 years after the Mount Agung eruption. The 1997 maximum occurs approximately 20 years after the former one. The nudged simulations better reproduce this second maximum than the historical simulations. This is due to the initialisation of a cooling of the convection sites in the 1980s under the effect of a persistent North Atlantic oscillation (NAO) positive phase, a feature not captured in the historical simulations. Hence we argue that the 20-year cycle excited by the 1963 Mount Agung eruption together with the NAO forcing both contributed to the 1990s AMOC maximum. These results support the existence of a 20-year cycle in the North Atlantic in the observations. Hindcasts following the CMIP5 protocol are launched from a nudged simulation every 5 years for the 1960–2005 period. They exhibit significant correlation skill score as compared to an independent reconstruction of the AMOC from 4-year lead-time average. This encouraging result is accompanied by increased correlation skills in reproducing the observed 2-m air temperature in the bordering regions of the North Atlantic as compared to non-initialized simulations. To a lesser extent, predicted precipitation tends to correlate with the nudged simulation in the tropical Atlantic. We argue that this skill is due to the initialisation and predictability of the AMOC in the present prediction system. The mechanisms evidenced here support the idea of volcanic eruptions as a pacemaker for internal variability of the AMOC. Together with the existence of a 20-year cycle in the North Atlantic they propose a novel and complementary explanation for the AMOC variations over the last 50 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, numerical analyses of the thermal performance of an indirect evaporative air cooler incorporating a M-cycle cross-flow heat exchanger has been carried out. The numerical model was established from solving the coupled governing equations for heat and mass transfer between the product and working air, using the finite-element method. The model was developed using the EES (Engineering Equation Solver) environment and validated by published experimental data. Correlation between the cooling (wet-bulb) effectiveness, system COP and a number of air flow/exchanger parameters was developed. It is found that lower channel air velocity, lower inlet air relative humidity, and higher working-to-product air ratio yielded higher cooling effectiveness. The recommended average air velocities in dry and wet channels should not be greater than 1.77 m/s and 0.7 m/s, respectively. The optimum flow ratio of working-to-product air for this cooler is 50%. The channel geometric sizes, i.e. channel length and height, also impose significant impact to system performance. Longer channel length and smaller channel height contribute to increase of the system cooling effectiveness but lead to reduced system COP. The recommend channel height is 4 mm and the dimensionless channel length, i.e., ratio of the channel length to height, should be in the range 100 to 300. Numerical study results indicated that this new type of M-cycle heat and mass exchanger can achieve 16.7% higher cooling effectiveness compared with the conventional cross-flow heat and mass exchanger for the indirect evaporative cooler. The model of this kind is new and not yet reported in literatures. The results of the study help with design and performance analyses of such a new type of indirect evaporative air cooler, and in further, help increasing market rating of the technology within building air conditioning sector, which is currently dominated by the conventional compression refrigeration technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper provides a comparative study of the performance of cross-flow and counter-flow M-cycle heat exchangers for dew point cooling. It is recognised that evaporative cooling systems offer a low energy alternative to conventional air conditioning units. Recently emerged dew point cooling, as the renovated evaporative cooling configuration, is claimed to have much higher cooling output over the conventional evaporative modes owing to use of the M-cycle heat exchangers. Cross-flow and counter-flow heat exchangers, as the available structures for M-cycle dew point cooling processing, were theoretically and experimentally investigated to identify the difference in cooling effectiveness of both under the parallel structural/operational conditions, optimise the geometrical sizes of the exchangers and suggest their favourite operational conditions. Through development of a dedicated computer model and case-by-case experimental testing and validation, a parametric study of the cooling performance of the counter-flow and cross-flow heat exchangers was carried out. The results showed the counter-flow exchanger offered greater (around 20% higher) cooling capacity, as well as greater (15%–23% higher) dew-point and wet-bulb effectiveness when equal in physical size and under the same operating conditions. The cross-flow system, however, had a greater (10% higher) Energy Efficiency (COP). As the increased cooling effectiveness will lead to reduced air volume flow rate, smaller system size and lower cost, whilst the size and cost are the inherent barriers for use of dew point cooling as the alternation of the conventional cooling systems, the counter-flow system is considered to offer practical advantages over the cross-flow system that would aid the uptake of this low energy cooling alternative. In line with increased global demand for energy in cooling of building, largely by economic booming of emerging developing nations and recognised global warming, the research results will be of significant importance in terms of promoting deployment of the low energy dew point cooling system, helping reduction of energy use in cooling of buildings and cut of the associated carbon emission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors estimate climate warming–related twenty-first-century changes of moisture transports from the descending into the ascending regions in the tropics. Unlike previous studies that employ time and space averaging, here homogeneous high horizontal and vertical resolution data from an Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) climate model are used. This allows for estimating changes in much greater detail (e.g., the estimation of the distribution of ascending and descending regions, changes in the vertical profile, and separating changes of the inward and outward transports). Low-level inward and midlevel outward moisture transports of the convective regions in the tropics are found to increase in a simulated anthropogenically warmed climate as compared to a simulated twentieth-century atmosphere, indicating an intensification of the hydrological cycle. Since an increase of absolute inward transport exceeds the absolute increase of outward transport, the resulting budget is positive, meaning that more water is projected to converge in the moist tropics. The intensification is found mainly to be due to the higher amount of water in the atmosphere, while the contribution of weakening wind counteracts this response marginally. In addition the changing statistical properties of the vertical profile of the moisture transport are investigated and the importance of the substantial outflow of moisture from the moist tropics at midlevels is demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robust and physically understandable responses of the global atmospheric water cycle to a warming climate are presented. By considering interannual responses to changes in surface temperature (T), observations and AMIP5 simulations agree on an increase in column integrated water vapor at the rate 7 %/K (in line with the Clausius­Clapeyron equation) and of precipitation at the rate 2-­3 %/K (in line with energetic constraints). Using simple and complex climate models, we demonstrate that radiative forcing by greenhouse gases is currently suppressing global precipitation (P) at ~ -0.15 %/decade. Along with natural variability, this can explain why observed trends in global P over the period 1988-2008 are close to zero. Regional responses in the global water cycle are strongly constrained by changes in moisture fluxes. Model simulations show an increased moisture flux into the tropical wet region at 900 hPa and an enhanced outflow (of smaller magnitude) at around 600 hPa with warming. Moisture transport explains an increase in P in the wet tropical regions and small or negative changes in the dry regions of the subtropics in CMIP5 simulations of a warming climate. For AMIP5 simulations and satellite observations, the heaviest 5-day rainfall totals increase in intensity at ~15 %/K over the ocean with reductions at all percentiles over land. The climate change response in CMIP5 simulations shows consistent increases in P over ocean and land for the highest intensities, close to the Clausius-Clapeyron scaling of 7 %/K, while P declines for the lowest percentiles, indicating that interannual variability over land may not be a good proxy for climate change. The local changes in precipitation and its extremes are highly dependent upon small shifts in the large-scale atmospheric circulation and regional feedbacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evaluation of the quality and usefulness of climate modeling systems is dependent upon an assessment of both the limited predictability of the climate system and the uncertainties stemming from model formulation. In this study a methodology is presented that is suited to assess the performance of a regional climate model (RCM), based on its ability to represent the natural interannual variability on monthly and seasonal timescales. The methodology involves carrying out multiyear ensemble simulations (to assess the predictability bounds within which the model can be evaluated against observations) and multiyear sensitivity experiments using different model formulations (to assess the model uncertainty). As an example application, experiments driven by assimilated lateral boundary conditions and sea surface temperatures from the ECMWF Reanalysis Project (ERA-15, 1979–1993) were conducted. While the ensemble experiment demonstrates that the predictability of the regional climate varies strongly between different seasons and regions, being weakest during the summer and over continental regions, important sensitivities of the modeling system to parameterization choices are uncovered. In particular, compensating mechanisms related to the long-term representation of the water cycle are revealed, in which summer dry and hot conditions at the surface, resulting from insufficient evaporation, can persist despite insufficient net solar radiation (a result of unrealistic cloud-radiative feedbacks).