55 resultados para Hydrologic Modeling Catchment and Runoff Computations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been a significant increase in the skill and resolution of numerical weather prediction models (NWPs) in recent decades, extending the time scales of useful weather predictions. The land-surface models (LSMs) of NWPs are often employed in hydrological applications, which raises the question of how hydrologically representative LSMs really are. In this paper, precipitation (P), evaporation (E) and runoff (R) from the European Centre for Medium-Range Weather Forecasts (ECMWF) global models were evaluated against observational products. The forecasts differ substantially from observed data for key hydrological variables. In addition, imbalanced surface water budgets, mostly caused by data assimilation, were found on both global (P-E) and basin scales (P-E-R), with the latter being more important. Modeled surface fluxes should be used with care in hydrological applications and further improvement in LSMs in terms of process descriptions, resolution and estimation of uncertainties is needed to accurately describe the land-surface water budgets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seasonal variations in the stable isotopic composition of snow and meltwater were investigated in a sub-arctic, mountainous, but non-glacial, catchment at Okstindan in northern Norway based on analyses of delta(18)O and deltaD. Samples were collected during four field periods (August 1998; April 1999; June 1999 and August 1999) at three sites lying on an altitudinal transect (740-970 m a.s.l.). Snowpack data display an increase in the mean values of delta(18)O (increasing from a mean value of - 13.51 to - 11.49% between April and August), as well as a decrease in variability through the melt period. Comparison with a regional meteoric water line indicates that the slope of the delta(18)O - deltaD line for the snowpacks decreases over the same period, dropping from 7.49 to approximately 6.2. This change points to the role of evaporation in snowpack ablation and is confirmed by the vertical profile of deuterium excess. Snowpack seepage data, although limited, also suggest reduced values of deltaD, as might be associated with local evaporation during meltwater generation. In general, meltwaters were depleted in delta(18)O relative to the source snowpack at the peak of the melt (June), but later in the year (August) the difference between the two was not statistically significant. The diurnal pattern of isotopic composition indicates that the most depleted meltwaters coincide with the peak in temperature and, hence, meltwater production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This study presents a numerical method to derive the Darcy- Weisbach friction coefficient for overland flow under partial inundation of surface roughness. To better account for the variable influence of roughness with varying levels of emergence, we model the flow over a network which evolves as the free surface rises. This network is constructed using a height numerical map, based on surface roughness data, and a discrete geometry skeletonization algorithm. By applying a hydraulic model to the flows through this network, local heads, velocities, and Froude and Reynolds numbers over the surface can be estimated. These quantities enable us to analyze the flow and ultimately to derive a bulk friction factor for flow over the entire surface which takes into account local variations in flow quantities. Results demonstrate that although the flow is laminar, head losses are chiefly inertial because of local flow disturbances. The results also emphasize that for conditions of partial inundation, flow resistance varies nonmonotonically but does generally increase with progressive roughness inundation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Global hydrological models (GHMs) model the land surface hydrologic dynamics of continental-scale river basins. Here we describe one such GHM, the Macro-scale - Probability-Distributed Moisture model.09 (Mac-PDM.09). The model has undergone a number of revisions since it was last applied in the hydrological literature. This paper serves to provide a detailed description of the latest version of the model. The main revisions include the following: (1) the ability for the model to be run for n repetitions, which provides more robust estimates of extreme hydrological behaviour, (2) the ability of the model to use a gridded field of coefficient of variation (CV) of daily rainfall for the stochastic disaggregation of monthly precipitation to daily precipitation, and (3) the model can now be forced with daily input climate data as well as monthly input climate data. We demonstrate the effects that each of these three revisions has on simulated runoff relative to before the revisions were applied. Importantly, we show that when Mac-PDM.09 is forced with monthly input data, it results in a negative runoff bias relative to when daily forcings are applied, for regions of the globe where the day-to-day variability in relative humidity is high. The runoff bias can be up to - 80% for a small selection of catchments but the absolute magnitude of the bias may be small. As such, we recommend future applications of Mac-PDM.09 that use monthly climate forcings acknowledge the bias as a limitation of the model. The performance of Mac-PDM.09 is evaluated by validating simulated runoff against observed runoff for 50 catchments. We also present a sensitivity analysis that demonstrates that simulated runoff is considerably more sensitive to method of PE calculation than to perturbations in soil moisture and field capacity parameters.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Hydrologic transport of dissolved organic carbon (DOC) from peat soils may differ to organo-mineral soils in how they responded to changes in flow, because of differences in soil profile and hydrology. In well-drained organo-mineral soils, low flow is through the lower mineral layer where DOC is absorbed and high flow is through the upper organic layer where DOC is produced. DOC concentrations in streams draining organo-mineral soils typically increase with flow. In saturated peat soils, both high and low flows are through an organic layer where DOC is produced. Therefore, DOC in stream water draining peat may not increase in response to changes in flow as there is no switch in flow path between a mineral and organic layer. To verify this, we conducted a high-resolution monitoring study of soil and stream water at an upland peat catchment in northern England. Our data showed a strong positive correlation between DOC concentrations at − 1 and − 5 cm depth and stream water, and weaker correlations between concentrations at − 20 to − 50 cm depth and stream water. Although near surface organic material appears to be the key source of stream water DOC in both peat and organo-mineral soils, we observed a negative correlation between stream flow and DOC concentrations instead of a positive correlation as DOC released from organic layers during low and high flow was diluted by rainfall. The differences in DOC transport processes between peat and organo-mineral soils have different implications for our understanding of long-term changes in DOC exports. While increased rainfall may cause an increase in DOC flux from peat due to an increase in water volume, it may cause a decrease in concentrations. This response is contrary to expected changes in DOC exports from organo-mineral soils, where increase rainfall is likely to result in an increase in flux and concentration.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents a new approach to modelling flash floods in dryland catchments by integrating remote sensing and digital elevation model (DEM) data in a geographical information system (GIS). The spectral reflectance of channels affected by recent flash floods exhibit a marked increase, due to the deposition of fine sediments in these channels as the flood recedes. This allows the parts of a catchment that have been affected by a recent flood event to be discriminated from unaffected parts, using a time series of Landsat images. Using images of the Wadi Hudain catchment in southern Egypt, the hillslope areas contributing flow were inferred for different flood events. The SRTM3 DEM was used to derive flow direction, flow length, active channel cross-sectional areas and slope. The Manning Equation was used to estimate the channel flow velocities, and hence the time-area zones of the catchment. A channel reach that was active during a 1985 runoff event, that does not receive any tributary flow, was used to estimate a transmission loss rate of 7·5 mm h−1, given the maximum peak discharge estimate. Runoff patterns resulting from different flood events are quite variable; however the southern part of the catchment appears to have experienced more floods during the period of study (1984–2000), perhaps because the bedrock hillslopes in this area are more effective at runoff production than other parts of the catchment which are underlain by unconsolidated Quaternary sands and gravels. Due to high transmission loss, runoff generated within the upper reaches is rarely delivered to the alluvial fan and Shalateen city situated at the catchment outlet. The synthetic GIS-based time area zones, on their own, cannot be relied on to model the hydrographs reliably; physical parameters, such as rainfall intensity, distribution, and transmission loss, must also be considered.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Research on arable sandy loam and silty clay loam soils on 4° slopes in England has shown that tramlines (i.e. the unseeded wheeling areas used to facilitate spraying operations in cereal crops) can represent the most important pathway for phosphorus and sediment loss from moderately sloping fields. Detailed monitoring over the October–March period in winters 2005–2006 and 2006–2007 included event-based sampling of surface runoff, suspended and particulate sediment, and dissolved and particulate phosphorus from hillslope segments (each ∼300–800 m2) established in a randomized block design with four replicates of each treatment at each of two sites on lighter and heavier soils. Experimental treatments assessed losses from the cropped area without tramlines, and from the uncropped tramline area, and were compared to losses from tramlines which had been disrupted once in the autumn with a shallow tine. On the lighter soil, the effects of removal or shallow incorporation of straw residues was also determined. Research on both sandy and silty clay loam soils across two winters showed that tramline wheelings represented the dominant pathway for surface runoff and transport of sediment, phosphorus and nitrogen from cereal crops on moderate slopes. Results indicated 5·5–15·8% of rainfall lost as runoff, and losses of 0·8–2·9 kg TP ha−1 and 0·3–4·8 t ha−1 sediment in tramline treatments, compared to only 0·2–1·7% rainfall lost as runoff, and losses of 0·0–0·2 kg TP ha−1 and 0·003–0·3 t ha−1 sediment from treatments without tramlines or those where tramlines had been disrupted. The novel shallow disruption of tramline wheelings using a tine once following the autumn spray operation consistently and dramatically reduced (p < 0·001) surface runoff and loads of sediment, total nitrogen and total phosphorus to levels similar to those measured in cropped areas between tramlines. Results suggest that options for managing tramline wheelings warrant further refinement and evaluation with a view to incorporating them into spatially-targeted farm-level management planning using national or catchment-based agri-environment policy instruments aimed at reducing diffuse pollution from land to surface water systems. Copyright © 2010 John Wiley & Sons, Ltd.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Changes in the depth of Lake Viljandi between 1940 and 1990 were simulated using a lake water and energy-balance model driven by standard monthly weather data. Catchment runoff was simulated using a one-dimensional hydrological model, with a two-layer soil, a single-layer snowpack, a simple representation of vegetation cover and similarly modest input requirements. Outflow was modelled as a function of lake level. The simulated record of lake level and outflow matched observations of lake-level variations (r = 0.78) and streamflow (r = 0.87) well. The ability of the model to capture both intra- and inter-annual variations in the behaviour of a specific lake, despite the relatively simple input requirements, makes it extremely suitable for investigations of the impacts of climate change on lake water balance.