85 resultados para Hemerythrin Model Complex


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a complex-valued (CV) B-spline neural network approach for efficient identification and inversion of CV Wiener systems. The CV nonlinear static function in the Wiener system is represented using the tensor product of two univariate B-spline neural networks. With the aid of a least squares parameter initialisation, the Gauss-Newton algorithm effectively estimates the model parameters that include the CV linear dynamic model coefficients and B-spline neural network weights. The identification algorithm naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. An accurate inverse of the CV Wiener system is then obtained, in which the inverse of the CV nonlinear static function of the Wiener system is calculated efficiently using the Gaussian-Newton algorithm based on the estimated B-spline neural network model, with the aid of the De Boor recursions. The effectiveness of our approach for identification and inversion of CV Wiener systems is demonstrated using the application of digital predistorter design for high power amplifiers with memory

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was, within a sensitivity analysis framework, to determine if additional model complexity gives a better capability to model the hydrology and nitrogen dynamics of a small Mediterranean forested catchment or if the additional parameters cause over-fitting. Three nitrogen-models of varying hydrological complexity were considered. For each model, general sensitivity analysis (GSA) and Generalized Likelihood Uncertainty Estimation (GLUE) were applied, each based on 100,000 Monte Carlo simulations. The results highlighted the most complex structure as the most appropriate, providing the best representation of the non-linear patterns observed in the flow and streamwater nitrate concentrations between 1999 and 2002. Its 5% and 95% GLUE bounds, obtained considering a multi-objective approach, provide the narrowest band for streamwater nitrogen, which suggests increased model robustness, though all models exhibit periods of inconsistent good and poor fits between simulated outcomes and observed data. The results confirm the importance of the riparian zone in controlling the short-term (daily) streamwater nitrogen dynamics in this catchment but not the overall flux of nitrogen from the catchment. It was also shown that as the complexity of a hydrological model increases over-parameterisation occurs, but the converse is true for a water quality model where additional process representation leads to additional acceptable model simulations. Water quality data help constrain the hydrological representation in process-based models. Increased complexity was justifiable for modelling river-system hydrochemistry. Increased complexity was justifiable for modelling river-system hydrochemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dinuclear complex [{Ru(CN)4}2(μ-bppz)]4− shows a strongly solvent-dependent metal–metal electronic interaction which allows the mixed-valence state to be switched from class 2 to class 3 by changing solvent from water to CH2Cl2. In CH2Cl2 the separation between the successive Ru(II)/Ru(III) redox couples is 350 mVand the IVCT band (from the UV/Vis/NIR spectroelectrochemistry) is characteristic of a borderline class II/III or class III mixed valence state. In water, the redox separation is only 110 mVand the much broader IVCT transition is characteristic of a class II mixed-valence state. This is consistent with the observation that raising and lowering the energy of the d(π) orbitals in CH2Cl2 or water, respectively, will decrease or increase the energy gap to the LUMO of the bppz bridging ligand, which provides the delocalisation pathway via electron-transfer. IR spectroelectrochemistry could only be carried out successfully in CH2Cl2 and revealed class III mixed-valence behaviour on the fast IR timescale. In contrast to this, time-resolved IR spectroscopy showed that the MLCTexcited state, which is formulated as RuIII(bppz˙−)RuII and can therefore be considered as a mixed-valence Ru(II)/Ru(III) complex with an intermediate bridging radical anion ligand, is localised on the IR timescale with spectroscopically distinct Ru(II) and Ru(III) termini. This is because the necessary electron-transfer via the bppz ligand is more difficult because of the additional electron on bppz˙− which raises the orbital through which electron exchange occurs in energy. DFT calculations reproduce the electronic spectra of the complex in all three Ru(II)/Ru(II), Ru(II)/Ru(III) and Ru(III)/Ru(III) calculations in both water and CH2Cl2 well as long as an explicit allowance is made for the presence of water molecules hydrogen-bonded to the cyanides in the model used. They also reproduce the excited-state IR spectra of both [Ru(CN)4(μ-bppz)]2– and [{Ru(CN)4}2(μ-bppz)]4− very well in both solvents. The reorganization of the water solvent shell indicates a possible dynamical reason for the longer life time of the triplet state in water compared to CH2Cl2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 'Avalanche', an object is lowered, players staying in contact throughout. Normally the task is easily accomplished. However, with larger groups counter-intuitive behaviours appear. The paper proposes a formal theory for the underlying causal mechanisms. The aim is to not only provide an explicit, testable hypothesis for the source of the observed modes of behaviour-but also to exemplify the contribution that formal theory building can make to understanding complex social phenomena. Mapping reveals the importance of geometry to the Avalanche game; each player has a pair of balancing loops, one involved in lowering the object, the other ensuring contact. For more players, sets of balancing loops interact and these can allow dominance by reinforcing loops, causing the system to chase upwards towards an ever-increasing goal. However, a series of other effects concerning human physiology and behaviour (HPB) is posited as playing a role. The hypothesis is therefore rigorously tested using simulation. For simplicity a 'One Degree of Freedom' case is examined, allowing all of the effects to be included whilst rendering the analysis more transparent. Formulation and experimentation with the model gives insight into the behaviours. Multi-dimensional rate/level analysis indicates that there is only a narrow region in which the system is able to move downwards. Model runs reproduce the single 'desired' mode of behaviour and all three of the observed 'problematic' ones. Sensitivity analysis gives further insight into the system's modes and their causes. Behaviour is seen to arise only when the geometric effects apply (number of players greater than degrees of freedom of object) in combination with a range of HPB effects. An analogy exists between the co-operative behaviour required here and various examples: conflicting strategic objectives in organizations; Prisoners' Dilemma and integrated bargaining situations. Additionally, the game may be relatable in more direct algebraic terms to situations involving companies in which the resulting behaviours are mediated by market regulations. Finally, comment is offered on the inadequacy of some forms of theory building and the case is made for formal theory building involving the use of models, analysis and plausible explanations to create deep understanding of social phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new Mn(III) complexes [MnL1(OOCH)(OH2)] (1), [MnL2(OH2)(2)][Mn2L22(NO2)(3)] (2) and [Mn2L21(NO2)(2)] (3) (where H2L1 = H(2)Me(2)Salen = 2,7-bis(2-hydroxyphenyl)-2,6-diazaocta-2,6-diene and H2L2 = H(2)Salpn = 1,7-bis(2-hydroxyphenyl)-2,6-diazahepta-1,6-diene) have been synthesized. X-ray crystal structure analysis reveals that 1 is a mononuclear species whereas 2 contains a mononuclear cationic and a dinuclear nitrite bridged (mu-1 kappa O:2 kappa O') anionic unit. Complex 3 is a phenoxido bridged dimer containing terminally coordinated nitrite. Complexes 1-3 show excellent catecholase-like activity with 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. Kinetic measurements suggest that the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first order kinetics with respect to the catalyst. Formation of bis(mu-oxo)dimanganese(III,III) as an intermediate during the course of reaction is identified from ESI-MS spectra. The characteristic six line EPR spectra of complex 2 in the presence of 3,5-DTBC supports the formation of manganese(II)-semiquinonate as an intermediate species during the catalytic oxidation of 3,5-DTBC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) includes a comparison of observation-based and modeling-based estimates of the aerosol direct radiative forcing. In this comparison, satellite-based studies suggest a more negative aerosol direct radiative forcing than modeling studies. A previous satellite-based study, part of the IPCC comparison, uses aerosol optical depths and accumulation-mode fractions retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) at collection 4. The latest version of MODIS products, named collection 5, improves aerosol retrievals. Using these products, the direct forcing in the shortwave spectrum defined with respect to present-day natural aerosols is now estimated at −1.30 and −0.65 Wm−2 on a global clear-sky and all-sky average, respectively, for 2002. These values are still significantly more negative than the numbers reported by modeling studies. By accounting for differences between present-day natural and preindustrial aerosol concentrations, sampling biases, and investigating the impact of differences in the zonal distribution of anthropogenic aerosols, good agreement is reached between the direct forcing derived from MODIS and the Hadley Centre climate model HadGEM2-A over clear-sky oceans. Results also suggest that satellite estimates of anthropogenic aerosol optical depth over land should be coupled with a robust validation strategy in order to refine the observation-based estimate of aerosol direct radiative forcing. In addition, the complex problem of deriving the aerosol direct radiative forcing when aerosols are located above cloud still needs to be addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the possibilities and limitations of using Regional Climate Model (RCM) output for the simulation of alpine permafrost scenarios. It focuses on the general problem of scale mismatch between RCMs and impact models and, in particular, the special challenges that arise when driving an impact model in topographically complex high-mountain environments with the output of an RCM. Two approaches are introduced that take into account the special difficulties in such areas, and thus enable the use of RCM for alpine permafrost scenario modelling. Intended as an initial example, they are applied at the area of Corvatsch (Upper Engadine, Switzerland) in order to demonstrate and discuss the application of the two approaches, rather than to provide an assessment of future changes in permafrost occurrence. There are still many uncertainties and inaccuracies inherent in climate and impact models, which increase when driving one model with the output of the other. Nevertheless, our study shows that the use of RCMs offers new and promising perspectives for the simulation of high-mountain permafrost scenarios

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mean field models (MFMs) of cortical tissue incorporate salient, average features of neural masses in order to model activity at the population level, thereby linking microscopic physiology to macroscopic observations, e.g., with the electroencephalogram (EEG). One of the common aspects of MFM descriptions is the presence of a high-dimensional parameter space capturing neurobiological attributes deemed relevant to the brain dynamics of interest. We study the physiological parameter space of a MFM of electrocortical activity and discover robust correlations between physiological attributes of the model cortex and its dynamical features. These correlations are revealed by the study of bifurcation plots, which show that the model responses to changes in inhibition belong to two archetypal categories or “families”. After investigating and characterizing them in depth, we discuss their essential differences in terms of four important aspects: power responses with respect to the modeled action of anesthetics, reaction to exogenous stimuli such as thalamic input, and distributions of model parameters and oscillatory repertoires when inhibition is enhanced. Furthermore, while the complexity of sustained periodic orbits differs significantly between families, we are able to show how metamorphoses between the families can be brought about by exogenous stimuli. We here unveil links between measurable physiological attributes of the brain and dynamical patterns that are not accessible by linear methods. They instead emerge when the nonlinear structure of parameter space is partitioned according to bifurcation responses. We call this general method “metabifurcation analysis”. The partitioning cannot be achieved by the investigation of only a small number of parameter sets and is instead the result of an automated bifurcation analysis of a representative sample of 73,454 physiologically admissible parameter sets. Our approach generalizes straightforwardly and is well suited to probing the dynamics of other models with large and complex parameter spaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recently proposed mean-field theory of mammalian cortex rhythmogenesis describes the salient features of electrical activity in the cerebral macrocolumn, with the use of inhibitory and excitatory neuronal populations (Liley et al 2002). This model is capable of producing a range of important human EEG (electroencephalogram) features such as the alpha rhythm, the 40 Hz activity thought to be associated with conscious awareness (Bojak & Liley 2007) and the changes in EEG spectral power associated with general anesthetic effect (Bojak & Liley 2005). From the point of view of nonlinear dynamics, the model entails a vast parameter space within which multistability, pseudoperiodic regimes, various routes to chaos, fat fractals and rich bifurcation scenarios occur for physiologically relevant parameter values (van Veen & Liley 2006). The origin and the character of this complex behaviour, and its relevance for EEG activity will be illustrated. The existence of short-lived unstable brain states will also be discussed in terms of the available theoretical and experimental results. A perspective on future analysis will conclude the presentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Details are given of the development and application of a 2D depth-integrated, conformal boundary-fitted, curvilinear model for predicting the depth-mean velocity field and the spatial concentration distribution in estuarine and coastal waters. A numerical method for conformal mesh generation, based on a boundary integral equation formulation, has been developed. By this method a general polygonal region with curved edges can be mapped onto a regular polygonal region with the same number of horizontal and vertical straight edges and a multiply connected region can be mapped onto a regular region with the same connectivity. A stretching transformation on the conformally generated mesh has also been used to provide greater detail where it is needed close to the coast, with larger mesh sizes further offshore, thereby minimizing the computing effort whilst maximizing accuracy. The curvilinear hydrodynamic and solute model has been developed based on a robust rectilinear model. The hydrodynamic equations are approximated using the ADI finite difference scheme with a staggered grid and the solute transport equation is approximated using a modified QUICK scheme. Three numerical examples have been chosen to test the curvilinear model, with an emphasis placed on complex practical applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study puts forward a method to model and simulate the complex system of hospital on the basis of multi-agent technology. The formation of the agents of hospitals with intelligent and coordinative characteristics was designed, the message object was defined, and the model operating mechanism of autonomous activities and coordination mechanism was also designed. In addition, the Ontology library and Norm library etc. were introduced using semiotic method and theory, to enlarge the method of system modelling. Swarm was used to develop the multi-agent based simulation system, which is favorable for making guidelines for hospital's improving it's organization and management, optimizing the working procedure, improving the quality of medical care as well as reducing medical charge costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The term ecosystem has been used to describe complex interactions between living organisms and the physical world. The principles underlying ecosystems can also be applied to complex human interactions in the digital world. As internet technologies make an increasing contribution to teaching and learning practice in higher education, the principles of digital ecosystems may help us understand how to maximise technology to benefit active, self-regulated learning especially among groups of learners. Here, feedback on student learning is presented within a conceptual digital ecosystems model of learning. Additionally, we have developed a Web 2.0-based system, called ASSET, which incorporates multimedia and social networking features to deliver assessment feedback within the functionality of the digital ecosystems model. Both the digital ecosystems model and the ASSET system are described and their implications for enhancing feedback on student learning are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurovascular coupling in response to stimulation of the rat barrel cortex was investigated using concurrent multichannel electrophysiology and laser Doppler flowmetry. The data were used to build a linear dynamic model relating neural activity to blood flow. Local field potential time series were subject to current source density analysis, and the time series of a layer IV sink of the barrel cortex was used as the input to the model. The model output was the time series of the changes in regional cerebral blood flow (CBF). We show that this model can provide excellent fit of the CBF responses for stimulus durations of up to 16 s. The structure of the model consisted of two coupled components representing vascular dilation and constriction. The complex temporal characteristics of the CBF time series were reproduced by the relatively simple balance of these two components. We show that the impulse response obtained under the 16-s duration stimulation condition generalised to provide a good prediction to the data from the shorter duration stimulation conditions. Furthermore, by optimising three out of the total of nine model parameters, the variability in the data can be well accounted for over a wide range of stimulus conditions. By establishing linearity, classic system analysis methods can be used to generate and explore a range of equivalent model structures (e.g., feed-forward or feedback) to guide the experimental investigation of the control of vascular dilation and constriction following stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of monsoon circulation in the northern and southern hemisphere to 6 ka orbital forcing has been examined in 17 atmospheric general circulation models and 11 coupled ocean–atmosphere general circulation models. The atmospheric response to increased summer insolation at 6 ka in the northern subtropics strengthens the northern-hemisphere summer monsoons and leads to increased monsoonal precipitation in western North America, northern Africa and China; ocean feedbacks amplify this response and lead to further increase in monsoon precipitation in these three regions. The atmospheric response to reduced summer insolation at 6 ka in the southern subtropics weakens the southern-hemisphere summer monsoons and leads to decreased monsoonal precipitation in northern South America, southern Africa and northern Australia; ocean feedbacks weaken this response so that the decrease in rainfall is smaller than might otherwise be expected. The role of the ocean in monsoonal circulation in other regions is more complex. There is no discernable impact of orbital forcing in the monsoon region of North America in the atmosphere-only simulations but a strong increase in precipitation in the ocean–atmosphere simulations. In contrast, there is a strong atmospheric response to orbital forcing over northern India but ocean feedback reduces the strength of the change in the monsoon although it still remains stronger than today. Although there are differences in magnitude and exact location of regional precipitation changes from model to model, the same basic mechanisms are involved in the oceanic modulation of the response to orbital forcing and this gives rise to a robust ensemble response for each of the monsoon systems. Comparison of simulated and reconstructed changes in regional climate suggest that the coupled ocean–atmosphere simulations produce more realistic changes in the northern-hemisphere monsoons than atmosphere-only simulations, though they underestimate the observed changes in precipitation in all regions. Evaluation of the southern-hemisphere monsoons is limited by lack of quantitative reconstructions, but suggest that model skill in simulating these monsoons is limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Communication signal processing applications often involve complex-valued (CV) functional representations for signals and systems. CV artificial neural networks have been studied theoretically and applied widely in nonlinear signal and data processing [1–11]. Note that most artificial neural networks cannot be automatically extended from the real-valued (RV) domain to the CV domain because the resulting model would in general violate Cauchy-Riemann conditions, and this means that the training algorithms become unusable. A number of analytic functions were introduced for the fully CV multilayer perceptrons (MLP) [4]. A fully CV radial basis function (RBF) nework was introduced in [8] for regression and classification applications. Alternatively, the problem can be avoided by using two RV artificial neural networks, one processing the real part and the other processing the imaginary part of the CV signal/system. A even more challenging problem is the inverse of a CV