62 resultados para Helix-loop-helix
Resumo:
If secondary structure predictions are to be incorporated into fold recognition methods, an assessment of the effect of specific types of errors in predicted secondary structures on the sensitivity of fold recognition should be carried out. Here, we present a systematic comparison of different secondary structure prediction methods by measuring frequencies of specific types of error. We carry out an evaluation of the effect of specific types of error on secondary structure element alignment (SSEA), a baseline fold recognition method. The results of this evaluation indicate that missing out whole helix or strand elements, or predicting the wrong type of element, is more detrimental than predicting the wrong lengths of elements or overpredicting helix or strand. We also suggest that SSEA scoring is an effective method for assessing accuracy of secondary structure prediction and perhaps may also provide a more appropriate assessment of the “usefulness” and quality of predicted secondary structure, if secondary structure alignments are to be used in fold recognition.
Resumo:
The disruption of the human immunolobulin E–high affinity receptor I (IgE–FcεRI) protein–protein interaction (PPI) is a validated strategy for the development of anti asthma therapeutics. Here, we describe the synthesis of an array of conformationally constrained cyclic peptides based on an epitope of the A–B loop within the Cε3 domain of IgE. The peptides contain various tolan (i.e., 1,2-biarylethyne) amino acids and their fully and partially hydrogenated congeners as conformational constraints. Modest antagonist activity (IC50 660 μM) is displayed by the peptide containing a 2,2′-tolan, which is the one predicted by molecular modeling to best mimic the conformation of the native A–B loop epitope in IgE.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled flight. The aim of this work is to construct a robust closed-loop control that optimally extends the stable and decoupled flight envelope. For the study of these systems nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and investigate control effects on dynamic behavior. In this work linear feedback control designs calculated by eigenstructure assignment methods are investigated for a simple aircraft model at a fixed flight condition. Bifurcation analysis in conjunction with linear control design methods is shown to aid control law design for the nonlinear system.
Resumo:
Aims: Quinolone antibiotics are the agents of choice for treating systemic Salmonella infections. Resistance to quinolones is usually mediated by mutations in the DNA gyrase gene gyrA. Here we report the evaluation of standard HPLC equipment for the detection of mutations (single nucleotide polymorphisms; SNPs) in gyrA, gyrB, parC and parE by denaturing high performance liquid chromatography (DHPLC). Methods: A panel of Salmonella strains was assembled which comprised those with known different mutations in gyrA (n = 8) and fluoroquinolone-susceptible and -resistant strains (n = 50) that had not been tested for mutations in gyrA. Additionally, antibiotic-susceptible strains of serotypes other than Salmonella enterica serovar Typhimurium strains were examined for serotype-specific mutations in gyrB (n = 4), parC (n = 6) and parE (n = 1). Wild-type (WT) control DNA was prepared from Salmonella Typhimurium NCTC 74. The DNA of respective strains was amplified by PCR using Optimase (R) proofreading DNA polymerase. Duplex DNA samples were analysed using an Agilent A1100 HPLC system with a Varian Helix (TM) DNA column. Sequencing was used to validate mutations detected by DHPLC in the strains with unknown mutations. Results: Using this HPLC system, mutations in gyrA, gyrB, parC and parE were readily detected by comparison with control chromatograms. Sequencing confirmed the gyrA predicted mutations as detected by DHPLC in the unknown strains and also confirmed serotype-associated sequence changes in non-Typhimurium serotypes. Conclusions: The results demonstrated that a non-specialist standard HPLC machine fitted with a generally available column can be used to detect SNPs in gyrA, gyrB, parC and parE genes by DHPLC. Wider applications should be possible.
Comparing the thermal performance of horizontal slinky-loop and vertical slinky-loop heat exchangers
Resumo:
The heat pump market in the UK has grown rapidly over the last few years. Performance analyses of vertical ground-loop heat exchanger configurations have been widely carried out using both numerical modelling and experiments. However, research findings and design recommendations on horizontal slinky-loop and vertical slinky-loop heat exchangers are far fewer compared with those for vertical ground-loop heat exchanger configurations, especially where the long-term operation of the systems is concerned. The paper presents the results obtained from a numerical simulation for the horizontal slinky-loop and vertical slinky-loop heat exchangers of a ground-source heat pump system. A three-dimensional numerical heat transfer model was developed to study the thermal performance of various heat exchanger configurations. The influence of the loop pitch (loop spacing) and the depth of a vertical slinky-loop installation were investigated and the thermal performance and excavation work required for the horizontal and vertical slinky-loop heat exchangers were compared. The influence of the installation depth for vertical slinky-loop configurations was also investigated. The results of this study show that the influence of the installation depth of the vertical slinky-loop heat exchanger on the thermal performance of the system is small. The maximum difference in the thermal performance between the vertical and horizontal slinky-loop heat exchangers with the same loop diameter and loop pitch is less than 5%.
Resumo:
This paper presents results obtained from a numerical simulation for the horizontal slinky-loop heat exchanger of a ground-source heat pump system. A three-dimensional numerical model was developed and the results of the thermal performance of various heat exchanger configurations are presented. The investigation was carried out on five types of loop pitch (loop spacing), three types of loop diameter, three values of soil thermal properties, and allowing continuous and intermittent operation. Comparison was made for the heat transfer rate, the amount of pipe material needed, as well as excavation work required for the horizontal slinky-loop heat exchanger. The results indicate that system parameters have a significant effect on the thermal performance of the system
Resumo:
The crystal structure of the ruthenium DNA ‘light-switch’ complex -[Ru(TAP)2(11-Cl-dppz)]2+ (TAP = tetraazaphenanthrene, dppz = dipyrido[3,2-a':2',3'-c]phenazine)) bound to the oligonucleotide duplex d(TCGGCGCCGA)2 is reported. The synthesis of the racemic ruthenium complex is described for the first time, and the racemate was used in this study. The crystal structure, at atomic resolution (1.0 Å), shows one ligand as a wedge in the minor groove, resulting in the 51 kinking of the double helix, as with the parent lambda-[Ru(TAP)2(dppz)]2+. Each complex binds to one duplex by intercalation of the dppz ligand and also by semi-intercalation of one of the orthogonal TAP ligands into a second symmetrically equivalent duplex. The 11-Cl substituent binds with the major component (66%) oriented with the 11-chloro substituent on the purine side of the terminal step of the duplex.
Resumo:
The orientation of the heliospheric magnetic field (HMF) in near‒Earth space is generally a good indicator of the polarity of HMF foot points at the photosphere. There are times, however, when the HMF folds back on itself (is inverted), as indicated by suprathermal electrons locally moving sunward, even though they must ultimately be carrying the heat flux away from the Sun. Analysis of the near‒Earth solar wind during the period 1998–2011 reveals that inverted HMF is present approximately 5.5% of the time and is generally associated with slow, dense solar wind and relatively weak HMF intensity. Inverted HMF is mapped to the coronal source surface, where a new method is used to estimate coronal structure from the potential‒field source‒surface model. We find a strong association with bipolar streamers containing the heliospheric current sheet, as expected, but also with unipolar or pseudostreamers, which contain no current sheet. Because large‒scale inverted HMF is a widely accepted signature of interchange reconnection at the Sun, this finding provides strong evidence for models of the slow solar wind which involve coronal loop opening by reconnection within pseudostreamer belts as well as the bipolar streamer belt. Occurrence rates of bipolar‒ and pseudostreamers suggest that they are equally likely to result in inverted HMF and, therefore, presumably undergo interchange reconnection at approximately the same rate. Given the different magnetic topologies involved, this suggests the rate of reconnection is set externally, possibly by the differential rotation rate which governs the circulation of open solar flux.
Resumo:
Sainfoin is a temperate legume that contains condensed tannins (CT), i.e. polyphenols that are able to bind proteins and thus reduce protein degradation in the rumen. A reduction in protein degradation in the rumen can lead to a subsequent increase in amino acid flow to the small intestine. The effects of CT in the rumen and the intestine differ according to the amount and structure of CT and the nature of the protein molecular structure. The objective of the present study was to investigate the degradability in the rumen of three CT-containing sainfoin varieties and CT-free lucerne in relation to CT content and structure (mean degree of polymerization, proportion of prodelphinidins and cis-flavanol units) and protein structure (amide I and II bands, ratio of amide I-to-amide II, α-helix, β-sheet, ratio of α-helix-to-β-sheet). Protein molecular structures were identified using Fourier transform/infrared-attenuated total reflectance (FT/IR-ATR) spectroscopy. The in situ degradability of three sainfoin varieties (Ambra, Esparcette and Villahoz) was studied in 2008, during the first growth cycle at two harvest dates (P1 and P2, i.e. 5 May and 2 June, respectively) and at one date (P3) during the second growth cycle (2 June) and these were compared with a tannin-free legume, lucerne (Aubigny). Loss of dry matter (DMDeg) and nitrogen (NDeg) in polyester bags suspended in the rumen was measured using rumen-fistulated cows. The NDeg of lucerne compared with sainfoin was 0·80 v. 0·77 at P1, 0·78 v. 0·65 at P2 and 0·79 v. 0·70 at P3, respectively. NDeg was related to the rapidly disappearing fraction (‘a’) fraction (r=0·76), the rate of degradation (‘c’) (r=0·92), to the content (r=−0·81) and structure of CT. However, the relationship between NDeg and the slowly disappearing fraction (‘b’) was weak. There was a significant effect of date and species×date, for NDeg and ‘a’ fraction. The secondary protein structure varied with harvest date (species×date) and was correlated with the fraction ‘b’. Both tannin and protein structures influenced the NDeg degradation. CT content and structure were correlated to the ‘a’ fraction and to the ‘c’. Features of the protein molecular secondary structure were correlated to the ‘b’ fraction.
Resumo:
The complete sequences of the dsrA and dsrB genes coding for the α− and β−subunits, respectively, of the sulphite reductase enzyme in Desulfovibrio desulfuricans were determined. Analyses of the amino acid sequences indicated a number of serohaem/Fe4S4 binding consensus sequences whilst predictive secondary structure analysis revealed a similar pattern of α−helix and β−strand structures between the two subunits which was indicative of gene duplication.
Resumo:
Using UV and srCD spectroscopy it is found that loop length within the i-motif structure is important for both thermal and pH stability, but in contrast to previous statements, it is the shorter loops that exhibit the highest stability.
Resumo:
Background and Aims Despite recent recognition that (1) plant–herbivore interactions during the establishment phase, (2) ontogenetic shifts in resource allocation and (3) herbivore response to plant volatile release are each pivotal to a comprehensive understanding of plant defence, no study has examined how herbivore olfactory response varies during seedling ontogeny. Methods Using a Y-tube olfactometer we examined snail (Helix aspersa) olfactory response to pellets derived from macerated Plantago lanceolata plants harvested at 1, 2, 3, 4, 5, 6 and 8 weeks of age to test the hypothesis that olfactory selection of plants by a generalist herbivore varies with plant age. Plant volatiles were collected for 10 min using solid-phase microextraction technique on 1- and 8-week-old P. lanceolata pellets and analysed by gas chromatography coupled with a mass spectrometer. Key Results Selection of P. lanceolata was strongly negatively correlated with increasing age; pellets derived from 1-week-old seedlings were three times more likely to be selected as those from 8-week-old plants. Comparison of plant selection experiments with plant volatile profiles from GC/MS suggests that patterns of olfactory selection may be linked to ontogenetic shifts in concentrations of green leaf volatiles and ethanol (and its hydrolysis derivatives). Conclusions Although confirmatory of predictions made by contemporary plant defence theory, this is the first study to elucidate a link between seedling age and olfactory selection by herbivores. As a consequence, this study provides a new perspective on the ontogenetic expression of seedling defence, and the role of seedling herbivores, particularly terrestrial molluscs, as selective agents in temperate plant communities.
Resumo:
The feedback mechanism used in a brain-computer interface (BCI) forms an integral part of the closed-loop learning process required for successful operation of a BCI. However, ultimate success of the BCI may be dependent upon the modality of the feedback used. This study explores the use of music tempo as a feedback mechanism in BCI and compares it to the more commonly used visual feedback mechanism. Three different feedback modalities are compared for a kinaesthetic motor imagery BCI: visual, auditory via music tempo, and a combined visual and auditory feedback modality. Visual feedback is provided via the position, on the y-axis, of a moving ball. In the music feedback condition, the tempo of a piece of continuously generated music is dynamically adjusted via a novel music-generation method. All the feedback mechanisms allowed users to learn to control the BCI. However, users were not able to maintain as stable control with the music tempo feedback condition as they could in the visual feedback and combined conditions. Additionally, the combined condition exhibited significantly less inter-user variability, suggesting that multi-modal feedback may lead to more robust results. Finally, common spatial patterns are used to identify participant-specific spatial filters for each of the feedback modalities. The mean optimal spatial filter obtained for the music feedback condition is observed to be more diffuse and weaker than the mean spatial filters obtained for the visual and combined feedback conditions.
Resumo:
The human cardiac troponin C peptide fragment H-V9EQLTEEQKN EFKAAFDIFVLGA31-OH, which covers helix-A in the native protein, self-assembles into b-sheet fibrils in solution. These fibrils further entangle to give a hydrogel. This peptide may therefore serve as a template for development of novel biomaterials.