76 resultados para Glucose-transporter Isoforms
Resumo:
Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca2+, resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 min OGD protocol, a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by metabotropic glutamate receptor 1 (mGluR1) or A3 receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC, or chelation of intracellular Ca2+ also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalization of AMPARs after OGD. We also show that a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A3 receptor antagonists, indicating that AMPARs are degraded following internalization. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection
Resumo:
Background and aims CCAAT/enhancer-binding protein alpha (CEBPA) is a transcription factor involved in adipogenesis and energy homeostasis. Caloric restriction reduces CEBPA protein expression in patients with metabolic syndrome (MetS). A previous report linked rs12691 SNP in CEBPA to altered concentration of fasting triglycerides. Our objective was to assess the effects of rs12691 in glucose metabolism in Metabolic Syndrome (MetS) patients. Methods and results Glucose metabolism was assessed by static (glucose, insulin, adiponectin, leptin and resistin plasma concentrations) and dynamic (disposition index, insulin sensitivity index, HOMA-IR and acute insulin response to glucose) indices, performed at baseline and after 12 weeks of 4 dietary interventions (high saturated fatty acid (SFA), high monounsaturated fatty acid (MUFA), low-fat and low-fat-high-n3 polyunsaturated fatty acid (PUFA)) in 486 subjects with MetS. Carriers of the minor A allele of rs12691 had altered disposition index (p = 0.0003), lower acute insulin response (p = 0.005) and a lower insulin sensitivity index (p = 0.025) indicating a lower insulin sensitivity and a lower insulin secretion, at baseline and at the end of the diets. Furthermore, A allele carriers displayed lower HDL concentration. Conclusion The presence of the A allele of rs12691 influences glucose metabolism of MetS patients. Clinical Trials Registry number NCT00429195.
Resumo:
Serine proteases generated during injury and inflammation cleave protease-activated receptor 2 (PAR(2)) on primary sensory neurons to induce neurogenic inflammation and hyperalgesia. Hyperalgesia requires sensitization of transient receptor potential vanilloid (TRPV) ion channels by mechanisms involving phospholipase C and protein kinase C (PKC). The protein kinase D (PKD) serine/threonine kinases are activated by diacylglycerol and PKCs and can phosphorylate TRPV1. Thus, PKDs may participate in novel signal transduction pathways triggered by serine proteases during inflammation and pain. However, it is not known whether PAR(2) activates PKD, and the expression of PKD isoforms by nociceptive neurons is poorly characterized. By using HEK293 cells transfected with PKDs, we found that PAR(2) stimulation promoted plasma membrane translocation and phosphorylation of PKD1, PKD2, and PKD3, indicating activation. This effect was partially dependent on PKCepsilon. By immunofluorescence and confocal microscopy, with antibodies against PKD1/PKD2 and PKD3 and neuronal markers, we found that PKDs were expressed in rat and mouse dorsal root ganglia (DRG) neurons, including nociceptive neurons that expressed TRPV1, PAR(2), and neuropeptides. PAR(2) agonist induced phosphorylation of PKD in cultured DRG neurons, indicating PKD activation. Intraplantar injection of PAR(2) agonist also caused phosphorylation of PKD in neurons of lumbar DRG, confirming activation in vivo. Thus, PKD1, PKD2, and PKD3 are expressed in primary sensory neurons that mediate neurogenic inflammation and pain transmission, and PAR(2) agonists activate PKDs in HEK293 cells and DRG neurons in culture and in intact animals. PKD may be a novel component of a signal transduction pathway for protease-induced activation of nociceptive neurons and an important new target for antiinflammatory and analgesic therapies.
Resumo:
Abstract Objective: Studies have started to question whether a specific component or combinations of metabolic syndrome (MetS) components may be more important in relation to cardiovascular disease risk. Our aim was to examine the impact of the presence of raised fasting glucose as a MetS component on postprandial lipaemia. Methods: Men classified with the MetS underwent a sequential test meal investigation, in which blood samples were taken at regular intervals after a test breakfast (t=0 min) and lunch (t=330 min). Lipids, glucose and insulin were measured in the fasting and postprandial samples. Results: MetS subjects with 3 or 4 components were subdivided into those without (n=34) and with (n=23) fasting hyperglycaemia (≥ 5.6 mmol/l), irrespective of the combination of components. Fasting lipids and insulin were similar in the two groups, with glucose significantly higher in the men with glucose as a MetS component (P<0.001). Following the test meals, there was a higher maximum concentration (maxC), area under the curve (AUC) and incremental AUC (P≤0.016) for the postprandial triacylglycerol (TAG) response in men with fasting hyperglycaemia. Greater glucose AUC (P<0.001) and insulin maxC (P=0.010) was also observed in these individuals after the test meals. Multivariate regression analysis revealed fasting glucose to be an important predictor of the postprandial TAG and glucose response. Conclusion: Our data analysis has revealed a greater impairment of postprandial TAG than glucose response in MetS subjects with raised fasting glucose. The worsening of postprandial lipaemic control may contribute to the greater CVD risk reported in individuals with MetS component combinations which include hyperglycaemia.
Resumo:
Crystallization must occur in honey in order to produce set or creamed honey; however, the process must occur in a controlled manner in order to obtain an acceptable product. As a consequence, reliable methods are needed to measure the crystal content of honey (φ expressed as kg crystal per kg honey), which can also be implemented with relative ease in industrial production facilities. Unfortunately, suitable methods do not currently exist. This article reports on the development of 2 independent offline methods to measure the crystal content in honey based on differential scanning calorimetry and high-performance liquid chromatography. The 2 methods gave highly consistent results on the basis of paired t-test involving 143 experimental points (P > 0.05, r**2 = 0.99). The crystal content also correlated with the relative viscosity, defined as the ratio of the viscosity of crystal containing honey to that of the same honey when all crystals are dissolved, giving the following correlation: μr = 1 + 1398.8∅**2.318. This correlation can be used to estimate the crystal content of honey in industrial production facilities. The crystal growth rate at a temperature of 14 ◦C—the normal crystallization temperature used in practice—was linear, and the growth rate also increased with the total glucose content in the honey.
Resumo:
Zinc (Zn)-deficient soils constrain rice (Oryza sativa) production and cause Zn malnutrition. The identification of Zn-deficiency-tolerant rice lines indicates that breeding might overcome these constraints. Here, we seek to identify processes underlying Zn-deficiency tolerance in rice at the physiological and transcriptional levels. A Zn-deficiency-tolerant line RIL46 acquires Zn more efficiently and produces more biomass than its nontolerant maternal line (IR74) at low Zn(ext) under field conditions. We tested if this was the result of increased expression of Zn(2+) transporters; increased root exudation of deoxymugineic acid (DMA) or low-molecular-weight organic acids (LMWOAs); and/or increased root production. Experiments were performed in field and controlled environment conditions. There was little genotypic variation in transcript abundance of Zn-responsive root Zn(2+)-transporters between the RIL46 and IR74. However, root exudation of DMA and LMWOA was greater in RIL46, coinciding with increased root expression of putative ligand-efflux genes. Adventitious root production was maintained in RIL46 at low Zn(ext), correlating with altered expression of root-specific auxin-responsive genes. Zinc-deficiency tolerance in RIL46 is most likely the result of maintenance of root growth, increased efflux of Zn ligands, and increased uptake of Zn-ligand complexes at low Zn(ext); these traits are potential breeding targets.
Resumo:
SUMOylation (small ubiquitin-like modifier conjugation) is an important post-translational modification which is becoming increasingly implicated in the altered protein dynamics associated with brain ischemia. The function of SUMOylation in cells undergoing ischemic stress and the identity of small ubiquitin-like modifier (SUMO) targets remain in most cases unknown. However, the emerging consensus is that SUMOylation of certain proteins might be part of an endogenous neuroprotective response. This review brings together the current understanding of the underlying mechanisms and downstream effects of SUMOylation in brain ischemia, including processes such as autophagy, mitophagy and oxidative stress. We focus on recent advances and controversies regarding key central nervous system proteins, including those associated with the nucleus, cytoplasm and plasma membrane, such as glucose transporters (GLUT1, GLUT4), excitatory amino acid transporter 2 glutamate transporters, K+ channels (K2P1, Kv1.5, Kv2.1), GluK2 kainate receptors, mGluR8 glutamate receptors and CB1 cannabinoid receptors, which are reported to be SUMO-modified. A discussion of the roles of these molecular targets for SUMOylation could play following an ischemic event, particularly with respect to their potential neuroprotective impact in brain ischemia, is proposed.
Resumo:
In dairy cows, an increase in plasma concentration of glucose-dependent insulinotropic polypeptide (GIP) is associated with an increase in metabolizable energy intake, but the role of GIP in energy partitioning of dairy cattle is not certain. The objective of this study was to examine the relationship between plasma GIP concentrations and energy partitioning toward milk production. Four mid-lactation, primiparous, rumenfistulated Holstein-Friesian cows were fed a control diet of 55% forage and 45% concentrate [dry matter (DM) basis] in a 4 × 4 Latin square design with 4-wk periods. The 4 treatments were (1) control diet fed at 1000 and 1600 h, and (2) once-daily (1000 h) feeding, (3) twice daily (1000 and 1600 h) feeding, and (4) 4 times/d (1000, 1600, 2200 and 0400 h) feeding of the control diet plus 1 dose (1.75 kg on a DM basis at 0955 h) into the rumen of supplemental vegetable proteins (Amino Green; SCA NuTec Ltd., Thirsk, UK). Measurements of respiratory exchange and energy balance were obtained over 4 d during the last week of each period while cows were housed in open-circuit respiration chambers. Blood was collected from the jugular vein every 30 min for 12 h, using indwelling catheters, starting at 0800 h on d 20 of each period. Plasma GIP concentration was measured in samples pooled over each 5 consecutive blood samplings. The relationships between plasma GIP, DM intake, heat production, respiratory quotient, milk yield, and milk energy output were analyzed using linear correlation procedures, with metabolizable intake as a partial variant. Plasma GIP concentration was not correlated with heat production, or milk yield, but was positively correlated with milk energy yield (correlation coefficient = 0.67) and negatively correlated with RQ (correlation coefficient = −0.72). The correlations between GIP and RQ and milk energy output do not imply causality, but suggest that a role for GIP may exist in the regulation of energy metabolism in dairy cows.
Resumo:
Increased central adiposity and abnormalities in glucose tolerance preceding type 2 diabetes can have demonstrable negative effects on cognitive function, even in ostensibly healthy, middle-aged females. The potential for GL manipulations to modulate glycaemic response and cognitive function in type 2 diabetes and obesity merits further investigation..
Resumo:
Isolated source monitoring recollection deficits indicate that abnormalities in glucose metabolism are not detrimental for global episodic memory processes. This enhances our understanding of how metabolic disorders are associated with memory impairments.
Resumo:
There is an increasing body of research investigating whether abnormal glucose tolerance is associated with cognitive impairments, the evidence from which is equivocal. A systematic search of the literature identified twenty-three studies which assessed either clinically defined impaired glucose tolerance (IGT) or variance in glucose tolerance within the clinically defined normal range (NGT). The findings suggest that poor glucose tolerance is associated with cognitive impairments, with decrements in verbal memory being most prevalent. However, the evidence for decrements in other domains was weak. The NGT studies report a stronger glucose tolerance-cognition association than the IGT studies, which is likely to be due to the greater number of glucose tolerance parameters and the more sensitive cognitive tests in the NGT studies compared to the IGT studies. It is also speculated that the negative cognitive impact of abnormalities in glucose tolerance increases with age, and that glucose consumption is most beneficial to individuals with poor glucose tolerance compared to individuals with normal glucose tolerance. The role of potential mechanisms are discussed.
Resumo:
Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca2+ transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca2+ transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization.
Resumo:
Anxiety disorders that are the most commonly occurring psychiatric disorders in childhood, are associated with a range of social and educational impairments and often continue into adulthood. Cognitive behaviour therapy (CBT) is an effective treatment option for the majority of cases, although up to 35-45% of children do not achieve remission. Recent research suggests that some genetic variants may be associated with a more beneficial response to psychological therapy. Epigenetic mechanisms such as DNA methylation work at the interface between genetic and environmental influences. Furthermore, epigenetic alterations at the serotonin transporter (SERT) promoter region have been associated with environmental influences such as stressful life experiences. In this study, we measured DNA methylation upstream of SERT in 116 children with an anxiety disorder, before and after receiving CBT. Change during treatment in percentage DNA methylation was significantly different in treatment responders vs nonresponders. This effect was driven by one CpG site in particular, at which responders increased in methylation, whereas nonresponders showed a decrease in DNA methylation. This is the first study to demonstrate differences in SERT methylation change in association with response to a purely psychological therapy. These findings confirm that biological changes occur alongside changes in symptomatology following a psychological therapy such as CBT.