88 resultados para Geospatial Data Model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nitrogen adsorption on carbon nanotubes is wide- ly studied because nitrogen adsorption isotherm measurement is a standard method applied for porosity characterization. A further reason is that carbon nanotubes are potential adsorbents for separation of nitrogen from oxygen in air. The study presented here describes the results of GCMC simulations of nitrogen (three site model) adsorption on single and multi walled closed nanotubes. The results obtained are described by a new adsorption isotherm model proposed in this study. The model can be treated as the tube analogue of the GAB isotherm taking into account the lateral adsorbate-adsorbate interactions. We show that the model describes the simulated data satisfactorily. Next this new approach is applied for a description of experimental data measured on different commercially available (and characterized using HRTEM) carbon nanotubes. We show that generally a quite good fit is observed and therefore it is suggested that the observed mechanism of adsorption in the studied materials is mainly determined by adsorption on tubes separated at large distances, so the tubes behave almost independently.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Much consideration is rightly given to the design of metadata models to describe data. At the other end of the data-delivery spectrum much thought has also been given to the design of geospatial delivery interfaces such as the Open Geospatial Consortium standards, Web Coverage Service (WCS), Web Map Server and Web Feature Service (WFS). Our recent experience with the Climate Science Modelling Language shows that an implementation gap exists where many challenges remain unsolved. To bridge this gap requires transposing information and data from one world view of geospatial climate data to another. Some of the issues include: the loss of information in mapping to a common information model, the need to create ‘views’ onto file-based storage, and the need to map onto an appropriate delivery interface (as with the choice between WFS and WCS for feature types with coverage-valued properties). Here we summarise the approaches we have taken in facing up to these problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An efficient method of combining neutron diffraction data over an extended Q range with detailed atomistic models is presented. A quantitative and qualitative mapping of the organization of the chain conformation in both glass and liquid phase has been performed. The proposed structural refinement method is based on the exploitation of the intrachain features of the diffraction pattern by the use of internal coordinates for bond lengths, valence angles and torsion rotations. Models are built stochastically by assignment of these internal coordinates from probability distributions with limited variable parameters. Variation of these parameters is used in the construction of models that minimize the differences between the observed and calculated structure factors. A series of neutron scattering data of 1,4-polybutadiene at the region 20320 K is presented. Analysis of the experimental data yield bond lengths for C-C and C=C of 1.54 and 1.35 Å respectively. Valence angles of the backbone were found to be at 112 and 122.8 for the CCC and CC=C respectively. Three torsion angles corresponding to the double bond and the adjacent R and β bonds were found to occupy cis and trans, s(, trans and g( and trans states, respectively. We compare our results with theoretical predictions, computer simulations, RIS models, and previously reported experimental results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new approach to the study of the local organization in amorphous polymer materials is presented. The method couples neutron diffraction experiments that explore the structure on the spatial scale 1–20 Å with the reverse Monte Carlo fitting procedure to predict structures that accurately represent the experimental scattering results over the whole momentum transfer range explored. Molecular mechanics and molecular dynamics techniques are also used to produce atomistic models independently from any experimental input, thereby providing a test of the viability of the reverse Monte Carlo method in generating realistic models for amorphous polymeric systems. An analysis of the obtained models in terms of single chain properties and of orientational correlations between chain segments is presented. We show the viability of the method with data from molten polyethylene. The analysis derives a model with average C-C and C-H bond lengths of 1.55 Å and 1.1 Å respectively, average backbone valence angle of 112, a torsional angle distribution characterized by a fraction of trans conformers of 0.67 and, finally, a weak interchain orientational correlation at around 4 Å.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a new methodology that couples neutron diffraction experiments over a wide Q range with single chain modelling in order to explore, in a quantitative manner, the intrachain organization of non-crystalline polymers. The technique is based on the assignment of parameters describing the chemical, geometric and conformational characteristics of the polymeric chain, and on the variation of these parameters to minimize the difference between the predicted and experimental diffraction patterns. The method is successfully applied to the study of molten poly(tetrafluoroethylene) at two different temperatures, and provides unambiguous information on the configuration of the chain and its degree of flexibility. From analysis of the experimental data a model is derived with CC and CF bond lengths of 1.58 and 1.36 Å, respectively, a backbone valence angle of 110° and a torsional angle distribution which is characterized by four isometric states, namely a split trans state at ± 18°, giving rise to a helical chain conformation, and two gauche states at ± 112°. The probability of trans conformers is 0.86 at T = 350°C, which decreases slightly to 0.84 at T = 400°C. Correspondingly, the chain segments are characterized by long all-trans sequences with random changes in sign, rather anisotropic in nature, which give rise to a rather stiff chain. We compare the results of this quantitative analysis of the experimental scattering data with the theoretical predictions of both force fields and molecular orbital conformation energy calculations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Assimilation of temperature observations into an ocean model near the equator often results in a dynamically unbalanced state with unrealistic overturning circulations. The way in which these circulations arise from systematic errors in the model or its forcing is discussed. A scheme is proposed, based on the theory of state augmentation, which uses the departures of the model state from the observations to update slowly evolving bias fields. Results are summarized from an experiment applying this bias correction scheme to an ocean general circulation model. They show that the method produces more balanced analyses and a better fit to the temperature observations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Data assimilation aims to incorporate measured observations into a dynamical system model in order to produce accurate estimates of all the current (and future) state variables of the system. The optimal estimates minimize a variational principle and can be found using adjoint methods. The model equations are treated as strong constraints on the problem. In reality, the model does not represent the system behaviour exactly and errors arise due to lack of resolution and inaccuracies in physical parameters, boundary conditions and forcing terms. A technique for estimating systematic and time-correlated errors as part of the variational assimilation procedure is described here. The modified method determines a correction term that compensates for model error and leads to improved predictions of the system states. The technique is illustrated in two test cases. Applications to the 1-D nonlinear shallow water equations demonstrate the effectiveness of the new procedure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the implementation of a 3D variational (3D-Var) data assimilation scheme for a morphodynamic model applied to Morecambe Bay, UK. A simple decoupled hydrodynamic and sediment transport model is combined with a data assimilation scheme to investigate the ability of such methods to improve the accuracy of the predicted bathymetry. The inverse forecast error covariance matrix is modelled using a Laplacian approximation which is calibrated for the length scale parameter required. Calibration is also performed for the Soulsby-van Rijn sediment transport equations. The data used for assimilation purposes comprises waterlines derived from SAR imagery covering the entire period of the model run, and swath bathymetry data collected by a ship-borne survey for one date towards the end of the model run. A LiDAR survey of the entire bay carried out in November 2005 is used for validation purposes. The comparison of the predictive ability of the model alone with the model-forecast-assimilation system demonstrates that using data assimilation significantly improves the forecast skill. An investigation of the assimilation of the swath bathymetry as well as the waterlines demonstrates that the overall improvement is initially large, but decreases over time as the bathymetry evolves away from that observed by the survey. The result of combining the calibration runs into a pseudo-ensemble provides a higher skill score than for a single optimized model run. A brief comparison of the Optimal Interpolation assimilation method with the 3D-Var method shows that the two schemes give similar results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) of CO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration, were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving >80% success rate and mean NEE confidence intervals <110 gC m−2 year−1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence intervals on annual NEE increased by 30% when observed data were used instead of synthetic data, reflecting and quantifying the addition of model error. Finally, our analyses indicated that incorporating additional constraints, using data on C pools (wood, soil and fine roots) would help to reduce uncertainties for model parameters poorly served by eddy covariance data.