51 resultados para Geometry of numbers
Resumo:
We study the boundedness and compactness of Toeplitz operators Ta on Bergman spaces , 1 < p < ∞. The novelty is that we allow distributional symbols. It turns out that the belonging of the symbol to a weighted Sobolev space of negative order is sufficient for the boundedness of Ta. We show the natural relation of the hyperbolic geometry of the disc and the order of the distribution. A corresponding sufficient condition for the compactness is also derived.
Resumo:
Our study takes as its motivation common concerns across a variety of disciplines regarding an understanding of the linguistic, rhetorical and argumentative functions of the narrative aspects of financial disclosures, however with one significant alteration. This is that we do not restrict our investigation to the textual aspects but also consider the discursive nature of numbers. Numbers and narratives are simply alternative, and complementary, media to be used in disclosure, and many of the linguistic, and all of the rhetorical and argumentative, considerations apply to both, and need to be addressed and analysed. For complete version of the "long abstract" see attached full text pdf or the link in "Related URLs" field.
Resumo:
A new sparse kernel density estimator is introduced based on the minimum integrated square error criterion for the finite mixture model. Since the constraint on the mixing coefficients of the finite mixture model is on the multinomial manifold, we use the well-known Riemannian trust-region (RTR) algorithm for solving this problem. The first- and second-order Riemannian geometry of the multinomial manifold are derived and utilized in the RTR algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with an accuracy competitive with those of existing kernel density estimators.
Resumo:
This paper presents preliminary results from an ethnoarchaeological study of animal husbandry in the modern village of Bestansur, situated in the lower Zagros Mountains of Iraqi Kurdistan. This research explores how modern families use and manage their livestock within the local landscape and identifies traces of this use. The aim is to provide the groundwork for future archaeological investigations focusing on the nearby Neolithic site of Bestansur. This is based on the premise that modern behaviours can suggest testable patterns for past practices within the same functional and ecological domains. Semi-structured interviews conducted with villagers from several households provided large amounts of information on modern behaviours that helped direct data collection, and which also illustrate notable shifts in practices and use of the local landscape over time. Strontium isotope analysis of modern plant material demonstrates that a measurable variation exists between the alluvial floodplain and the lower foothills, while analysis of modern dung samples shows clear variation between sheep/goat and cow dung, in terms of numbers of faecal spherulites. These results are specific to the local environment of Bestansur and can be used for evaluating and contextualising archaeological evidence as well as providing modern reference material for comparative purposes.
Resumo:
We describe a simple, inexpensive, but remarkably versatile and controlled growth environment for the observation of plant germination and seedling root growth on a flat, horizontal surface over periods of weeks. The setup provides to each plant a controlled humidity (between 56% and 91% RH), and contact with both nutrients and atmosphere. The flat and horizontal geometry of the surface supporting the roots eliminates the gravitropic bias on their development and facilitates the imaging of the entire root system. Experiments can be setup under sterile conditions and then transferred to a non-sterile environment. The system can be assembled in 1-2 minutes, costs approximately 8.78$ per plant, is almost entirely reusable (0.43$ per experiment in disposables), and is easily scalable to a variety of plants. We demonstrate the performance of the system by germinating, growing, and imaging Wheat (Triticum aestivum), Corn (Zea mays), and Wisconsin Fast Plants (Brassica rapa). Germination rates were close to those expected for optimal conditions.
Resumo:
A new sparse kernel density estimator is introduced based on the minimum integrated square error criterion combining local component analysis for the finite mixture model. We start with a Parzen window estimator which has the Gaussian kernels with a common covariance matrix, the local component analysis is initially applied to find the covariance matrix using expectation maximization algorithm. Since the constraint on the mixing coefficients of a finite mixture model is on the multinomial manifold, we then use the well-known Riemannian trust-region algorithm to find the set of sparse mixing coefficients. The first and second order Riemannian geometry of the multinomial manifold are utilized in the Riemannian trust-region algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with competitive accuracy to existing kernel density estimators.