51 resultados para Gene-expression Profiles
Resumo:
The chick Early B-cell Factor-2 and 3 (cEbf2 and cEbf3) genes are members of EBF family of helix loop helix transcription factors. The expression, regulation and importance of these genes have been extensively studied in lymphatic, nervous and muscular tissues. Recently, a new role for some members of EBF in bone development has been investigated. However, the expression profile and regulation in the axial skeleton precursor, the somite, have yet to be elucidated. Therefore, this study was aimed to investigate the expression and regulation of cEbf2 and cEbf3 genes in the developing chick embryo somite from HH4 to HH28. The spatiotemporal expression study revealed predominant localization of cEbf2 and cEbf3 in the lateral sclerotomal domains and later around vertebral cartilage anlagen of the arch and the proximal rib. Subsequently, microsurgeries, ectopic gene expression experiments were performed to analyze which tissues and factors regulate cEbf2 and cEbf3 expression. Lateral barriers experiments indicated the necessity for lateral signal(s) in the regulation of cEbf2 and cEbf3 genes. Results from tissue manipulations and ectopic gene expression experiments indicate that lateral plate-derived Bmp4 signals are necessary for the initiation and maintenance of cEbf2 and cEbf3 genes in somites. In conclusion, cEbf2 and cEbf3 genes are considered as lateral sclerotome markers which their expression is regulated by Bmp4 signals from the lateral plate mesoderm.
Resumo:
Oxidative stress induces cardiac myocyte apoptosis. At least some effects are probably mediated through changes in gene expression. Using Affymetrix arrays, we examined the changes in gene expression induced by H(2)O(2) (0.04, 0.1, and 0.2mM; 2 and 4h) in rat neonatal ventricular myocytes. Changes in selected upregulated genes were confirmed by ratiometric RT-PCR. p21(Cip1/Waf1) was one of the only two genes upregulated in all conditions studied. Of the heat shock proteins, only Hsp70/70.1 was induced by H(2)O(2) with no change in the expression of Hsp25, Hsp60 or Hsp90. Heme oxygenase 1 was also potently upregulated, but not heme oxygenases 2 or 3. Of the intercellular adhesion proteins, syndecan-1 was significantly upregulated in response to H(2)O(2), with little change in the expression of other syndecans and no change in expression of any of the integrins studied. Thus, oxidative stress, exemplified by H(2)O(2), selectively promotes the expression of specific gene family members.
Resumo:
The hypertrophic agonist endothelin-1 rapidly but transiently activates the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade (and other signalling pathways) in cardiac myocytes, but the events linking this to hypertrophy are not understood. Using Affymetrix rat U34A microarrays, we identified the short-term (2-4 h) changes in gene expression induced in neonatal myocytes by endothelin-1 alone or in combination with the ERK1/2 cascade inhibitor, U0126. Expression of 15 genes was significantly changed by U0126 alone, and expression of an additional 78 genes was significantly changed by endothelin-1. Of the genes upregulated by U0126, four are classically induced through the aryl hydrocarbon receptor (AhR) by dioxins suggesting that U0126 activates the xenobiotic response element in cardiac myocytes potentially independently of effects on ERK1/2 signalling. The 78 genes showing altered expression with endothelin-1 formed five clusters: (i) three clusters showing upregulation by endothelin-1 according to time course (4 h > 2 h; 2 h > 4 h; 2 h approximately 4 h) with at least partial inhibition by U0126; (ii) a cluster of 11 genes upregulated by endothelin-1 but unaffected by U0126 suggesting regulation through signalling pathways other than ERK1/2; (iii) a cluster of six genes downregulated by endothelin-1 with attenuation by U0126. Thus, U0126 apparently activates the AhR in cardiac myocytes (which must be taken into account in protracted studies), but careful analysis allows identification of genes potentially regulated acutely via the ERK1/2 cascade. Our data suggest that the majority of changes in gene expression induced by endothelin-1 are mediated by the ERK1/2 cascade.
Resumo:
High levels of oxidative stress promote cardiac myocyte death, though lower levels are potentially cytoprotective/anabolic. We examined the changes in gene expression in rat neonatal cardiac myocytes exposed to apoptotic (0.2 mM) or nontoxic (0.04 mM) concentrations of H2O2 (2, 4, or 24 h) using Affymetrix microarrays. Using U34B arrays, we identified a ubiquitously expressed, novel H2O2-responsive gene [putative peroxide-inducible transcript 1 (Perit1)], which generates two alternatively spliced transcripts. Using 230 2.0 arrays, H2O2 (0.04 mM) promoted significant changes in expression of only 32 genes, all of which were seen with 0.2 mM H2O2. We failed to detect any increase in the rate of protein synthesis in cardiac myocytes exposed to <0.1 mM H2O2, further suggesting that global, low concentrations of H2O2 are not anabolic in this system. H2O2 (0.2 mM) promoted significant (P < 0.05, >1.75-fold) changes in expression of 649 mRNAs and 187 RNAs corresponding to no established gene. Of the mRNAs, 114 encoded transcriptional regulators including Krüppel-like factors (Klfs). Quantitative PCR independently verified the changes in Klf expression. Thus, H2O2-induced cardiac myocyte apoptosis is associated with dynamic changes in gene expression. The expression of these genes and their protein products potentially influences the progression of the apoptotic response.
Resumo:
It is becoming apparent that anti-cancer chemotherapies are increasingly associated with cardiac dysfunction or even congestive heart failure (Minotti et al., 2004; Eliott, 2006; Suter et al., 2004; Ren, 2005). Our data suggest that one of the contributing factors to the cardiotoxicitiy of these drugs may be the activation of the AhR-response (including the increased expression of Cyp1a1) and/or other detoxification program in cardiac myocytes themselves. The induction of such responses may have secondary effects (e.g. to increase the level of intracellular oxidative stress), which may influence the contractility or even survival of cardiac myocytes. Furthermore, the specific response of cardiac myocytes, both with respect to the metabolizing enzymes and the export channels, potentially differs from other cells (e.g. we failed to detect any increase in expression of other “classical” AhR-responsive genes, Ugt1a1 and Ugt1a6). This could account for, for example, the observation that doxoribicinol (the 13-hydroxy form of doxorubicin) accumulates in cardiac myocytes but not in hepatocytes (Del Tacca et al., 1985; Olson et al., 1988). Given the vulnerability of the heart and the almost irreparable damage that can be done by severe oxidative stress, further studies would seem to be merited specifically on the effects of chemotherapeutic agents on cardiac myocytes.
Resumo:
The contractile cells in the heart (the cardiac myocytes) are terminally differentiated. In response to pathophysiological stresses, cardiac myocytes undergo hypertrophic growth or apoptosis, responses associated with the development of cardiac pathologies. There has been much effort expended in gaining an understanding of the stimuli which promote these responses, and in identifying the intracellular signaling pathways which are activated and potentially involved. These signaling pathways presumably modulate gene and protein expression to elicit the end-stage response. For the regulation of gene expression, the signal may traverse the cytoplasm to modulate nuclear-localized transcription factors as occurs with the mitogen-activated protein kinase or protein kinase B/Akt cascades. Alternatively, the signal may promote translocation of transcription factors from the cytoplasm to the nucleus as is seen with the calcineurin/NFAT and JAK/STAT systems. We present an overview of the principal signaling pathways implicated in the regulation of gene expression in cardiac myocyte pathophysiology, and summarize the current understanding of these pathways, the transcription factors they regulate and the changes in gene expression associated with the development of cardiac pathologies. Finally, we discuss how intracellular signaling and gene expression may be integrated to elicit the overall change in cellular phenotype.