109 resultados para Gas-phase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved studies of chlorosilylene, CISiH, generated by the 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with trimethylsilane, Me3SiH, in the gas phase. The reaction was studied at total pressures up to 100 torr (with and without added SF6) over the temperature range 297-407 K. The rate constants were found to be pressure independent and gave the following Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-13.97 +/- 0.25) + (12.57 +/- 1.64) kJ mol(-1)/RT In 10. The Arrhenius parameters are consistent with a mechanism involving an intermediate complex, whose rearrangement is the rate-determining step. Quantum chemical calculations of the potential energy surface for this reaction and also the reactions of CISiH with SiH4 and the other methylsilanes support this conclusion. Comparisons of both experiment and theory with the analogous Si-H insertion processes of SiH2 and SiMe2 show that the main factor causing the lower reactivity of ClSiH is the secondary energy barrier. The calculations also show the existence of a novel intramolecular H-atom exchange process in the complex of ClSiH with MeSiH3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved kinetic studies of the reactions of silylene, SiH2, and dideutero-silylene, SiD2, generated by laser. ash photolysis of phenylsilane and phenylsilane-d(3), respectively, have been carried out to obtain rate coefficients for their bimolecular reactions with 2-butyne, CH3C CCH3. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas at five temperatures in the range 294-612 K. The second-order rate coefficients, obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equations where the error limits are single standard deviations: log(k(H)(infinity)/cm(3) molecule(-1) s(-1)) = (-9.67 +/- 0.04) + (1.71 +/- 0.33) kJ mol(-1)/RTln10 log(k(D)(infinity)/cm(3) molecule(-1) s(-1)) = (-9.65 +/- 0.01) + (1.92 +/- 0.13) kJ mol(-1)/RTln10 Additionally, pressure-dependent rate coefficients for the reaction of SiH2 with 2-butyne in the presence of He (1-100 Torr) were obtained at 301, 429 and 613 K. Quantum chemical (ab initio) calculations of the SiC4H8 reaction system at the G3 level support the formation of 2,3-dimethylsilirene [cyclo-SiH2C(CH3)=C(CH3)-] as the sole end product. However, reversible formation of 2,3-dimethylvinylsilylene [CH3CH=C(CH3)SiH] is also an important process. The calculations also indicate the probable involvement of several other intermediates, and possible products. RRKM calculations are in reasonable agreement with the pressure dependences at an enthalpy value for 2,3-dimethylsilirene fairly close to that suggested by the ab initio calculations. The experimental isotope effects deviate significantly from those predicted by RRKM theory. The differences can be explained by an isotopic scrambling mechanism, involving H - D exchange between the hydrogens of the methyl groups and the D-atoms in the ring in 2,3-dimethylsilirene-1,1-d(2). A detailed mechanism involving several intermediate species, which is consistent with the G3 energy surface, is proposed to account for this.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser flash photolysis studies of silylene, SiH2, generated by the 193 nm laser flash photolysis phenylsilane, PhSiH3, have been carried out to obtain rate constants for its bimolecular reaction with PhSiH3 itself, in the gas phase. The reaction was studied in SF6 (mostly at 10 Torr total pressure) over the temperature range 298-595 K. The rate constants (also found to be pressure independent) gave the following Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-9.92 +/- 0.04) + (3.31 +/- 0.27) kJ mol(-1)/RT ln 10 Similar investigations of the reaction of silylene with benzene, C6H6, (295-410 K) gave data suggestive of the fact that SiH2 might be reacting with photochemical products of C6H6 as well as with C6H6 itself. However, in the latter system, apparent rate constants were sufficiently low to indicate that in the reaction of SiH2 with PhSiH3 addition to the aromatic ring was unlikely to be in excess of 3% of the total. Quantum chemical calculations of the energy surface for SiH2 + C6H6 indicate that 7-silanorcaradiene and 7-silacycloheptatriene are possible products but that PhSiH3 formation is unlikely. RRKM calculations suggest that 7-silanorcaradiene should be the initial product but that it cannot be collisionally stabilized under experimental conditions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas-phase electron-diffraction (GED) data together with results from ab initio molecular orbital calculations have been used to determine the structure of propylene sulphide. Values found for the main structural parameters for the molecule are consistent with those obtained from microwave studies and are compared here with those found for similar sulphur containing rings of general formula S(CH2)n (n = 2–5). A high ring strain enthalpy was calculated for propylene sulphide which is consistent with the small C–S–C angle (48.2(6)degrees) and the relatively long C–S bond lengths (ra = 1.831(2) Å). This is thought to account for the ease of ring opening in propylene sulphide observed in MOCVD reactions and the ready polymerisation of the molecule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative rate method has been used to measure the room-temperature rate constants for the gasphase reactions of ozone and NO3 with selected monoterpenes and cyclo-alkenes with structural similarities to monoterpenes. Measurements were carried out at 298 ! 2 K and 760 ! 10 Torr. The following rate constants (in units of 10"18 cm3 molecule"1 s"1) were obtained for the reaction with ozone: methyl cyclohexene (132 ! 17), terpinolene (1290 ! 360), ethylidene cyclohexane (223 ! 57), norbornene (860 ! 240), t-butyl isopropylidene cyclohexane (1500 ! 460), cyclopentene (543 ! 94), cyclohexene (81 ! 18), cyclooctene (451 ! 66), dicyclopentadiene (1460 ! 170) and a-pinene (107 ! 13). For the reaction with NO3 the rate constants obtained (in units of 10"12 cm3 molecule"1 s"1) were: methyl cyclohexene (7.92 ! 0.95), terpinolene (47.9 ! 4.0), ethylidene cyclohexane (4.30 ! 0.24), norbornene (0.266 ! 0.029), cyclohexene (0.540 ! 0.017), cyclooctene (0.513 ! 0.029), dicyclopentadiene (1.20 ! 0.10) and a-pinene (5.17 ! 0.62). Errors are quoted as the root mean square of the statistical error (95% con!dence) and the quoted error in the rate constant for the reference compound. Combining these results with previous studies, new recommendations for the rate constants are presented. Molecular orbital energies were calculated for each alkene and the kinetic data are discussed in terms of the deviation from the structureeactivity relationship obtained from the rate constants for a series of simple alkenes. Lifetimes with respect to key initiators of atmospheric oxidation have been calculated suggesting that the studied reactions play dominant roles in the night-time removal of these compounds from the atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved kinetic studies of silylene, SiH2, generated by laser flash photolysis of 1-silacyclopent-3-ene and phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with methanol, ethanol, 1-propanol, 1-butanol and 2-methyl-1-butanol. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at room temperature. In the study with methanol several buffer gases were used. All five reactions showed pressure dependences characteristic of third body assisted association reactions. The rate constant pressure dependences were modelled using RRKM theory, based on Eo values of the association complexes obtained by ab initio calculation (G3 level). Transition state models were adjusted to fit experimental fall-off curves and extrapolated to obtain k∞ values in the range 1.9 to 4.5 × 10-10 cm3 molecule-1 s-1. These numbers, corresponding to the true bimolecular rate constants, indicate efficiencies of between 16 and 67% of the collision rates for these reactions. In the reaction of SiH2 + MeOH there is a small kinetic component to the rate which is second order in MeOH (at low total pressures). This suggests an additional catalysed reaction pathway, which is supported by the ab initio calculations. These calculations have been used to define specific MeOH-for-H2O substitution effects on this catalytic pathway. Where possible our experimental and theoretical results are compared with those of previous studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by 193 nm laser flash photolysis of silacyclopent-3-ene, have been carried out in the presence of ammonia, NH3. Second order kinetics were observed. The reaction was studied in the gas phase at 10 Torr total pressure in SF6 bath gas at each of the three temperatures, 299, 340 and 400 K. The second order rate constants (laser pulse energy of 60 mJ/pulse) fitted the Arrhenius equation: log(k/cm3 molecule-1 s-1) = (-10.37 ± 0.17) + (0.36 ± 1.12 kJ mol-1)/RTln10 Experiments at other pressures showed that these rate constants were unaffected by pressure in the range 10-100 Torr, but showed small decreases in value at 3 and 1 Torr. There was also a weak intensity dependence, with rate constants decreasing at laser pulse energies of 30 mJ/pulse. Ab initio calculations at the G3 level of theory, show that SiH2 + NH3 should form an initial adduct (donor-acceptor complex), but that energy barriers are too great for further reaction of the adduct. This implies that SiH2 + NH3 should be a pressure dependent association reaction. The experimental data are inconsistent with this and we conclude that SiH2 decays are better explained by reaction of SiH2 with the amino radical, NH2, formed by photodissociation of NH3 at 193 nm. The mechanism of this previously unstudied reaction is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures of 2-hydroxybenzamide(C7H7NO2) and 2-methoxybenzamide (C8H9NO2) have been determined in the gas-phase by electron diffraction using results from quantum chemical calculations to inform restraints used on the structural parameters. Theoretical methods (HF and MP2/6-311+G(d,p)) predict four stable conformers for both 2-hydroxybenzamide and 2-methoxybenzamide. For both compounds, evidence for intramolecular hydrogen bonding is presented. In 2-hydroxybenzamide, the observed hydrogen bonded fragment is between the hydroxyl and carbonyl groups, while in 2-methoxybenzamide, the hydrogen bonded fragment is between one of the hydrogen atoms of the amide group and the methoxy oxygen atom.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The co-adsorption of CO and O on the unreconstructed (1 x 1) phase of Ir {100} was examined by low energy electron diffraction (LEED) and temperature programmed desorption (TPD). When CO is adsorbed at 188 K onto the Ir{100} surface precovered with 0.5 ML O, a mixed c(4 x 2)-(2O + CO) overlayer is formed. All CO is oxidised upon heating and desorbs as CO2 in three distinct stages at 230 K, 330 K and 430 K in a 2:1:2 ratio. The excess oxygen left on the surface after all CO has reacted forms an overlayer with a LEED pattern with p(2 x 10) periodicity. This overlayer consists of stripes with a local p(2 x 1)-O arrangement of oxygen atoms separated by stripes of uncovered It. When CO is adsorbed at 300 K onto the surface precovered with 0.5 ML O an apparent (2 x 2) LEED pattern is observed. LEED IV analysis reveals that this pattern is a superposition of diffraction patterns from islands of c(2 x 2)-CO and p(2 x 1)-O structures on the surface. Heating this co-adsorbed overlayer leads to the desorption of CO, in two stages at 330 K and 430 K; the excess CO (0.1 ML) desorbs at 590 K. LEED IV structural analysis of the mixed c(4 x 2) O and CO overlayer shows that both the CO molecules and the O atoms occupy bridge sites. The O atoms show significant lateral displacements of 0.14 angstrom away from the CO molecules; the C-O bond is slightly expanded with respect to the gas phase (1.19 angstrom); the modifications of the Ir substrate with respect to the bulk-terminated surface are very small. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Free radicals in cigarette smoke have been studied using spin trapping EPR techniques. 2R4F reference cigarettes were smoked using 35 ml puff volumes of 2 seconds duration, once every 60 seconds. The particulate phase of the smoke was separated from the gas phase by passing the smoke through a Cambridge filter pad. For both phases, free radicals were measured and identified. A range of spin-traps was employed: PBN, DMPO, DEPMPO, and DPPH-PBN. In the gas-phase, short-lived carbon- and oxygen- centered radicals were identified; the ratios between them changed during the smoking runs. For the first puffs, C-centered radicals predominated while for the later puffs, O-centered radicals were mainly observed. The particulate phase and the ‘tar’ were studied as well.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modelled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmo- spheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270 K is close to unity. Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for eðcient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KMGAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KMGAP is based on the PRA model framework (P¨oschl-Rudich- Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system and the computational constraints, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270K is close to unity (Winkler et al., 2006). Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have applied a combination of spectroscopic and diffraction methods to study the adduct formed between squaric acid and bypridine, which has been postulated to exhibit proton transfer associated with a single-crystal to single-crystal phase transition at ca. 450 K. A combination of X-ray single-crystal and very-high flux powder neutron diffraction data confirmed that a proton does transfer from the acid to the base in the high-temperature form. Powder X-ray diffraction measurements demonstrated that the transition was reversible but that a significant kinetic energy barrier must be overcome to revert to the original structure. Computational modeling is consistent with these results. Modeling also revealed that, while the proton transfer event would be strongly discouraged in the gas phase, it occurs in the solid state due to the increase in charge state of the molecular ions and their arrangement inside the lattice. The color change is attributed to a narrowing of the squaric acid to bipyridine charge-transfer energy gap. Finally, evidence for the possible existence of two further phases at high pressure is also presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infrared spectra of thoformaldehyde, H2CS and D2CS, were observed in the gas phase at a resolution of better than 0.1 cm−1 from 4000 to 400 cm−1 using a Nicolet FTIR system. Vibrational band origins and rotational constants were determined for ν2, ν3, ν4, and ν6 of H2CS and for ν1, ν2, ν3, ν4, and ν6 of D2CS. The ν3, ν4, and ν6 bands of H2CS were analyzed as a set of three Coriolis interacting bands, and three Coriolis constants were determined; similarly the ν4 and ν6 bands of D2CS were analyzed as a pair of interacting bands and one Coriolis constant was determined. A general harmonic force field was determined, without constraints, to fit the vibrational wavenumbers, Coriolis constants, and centrifugal distortion constants. A zero-point (rz) structure was determined from the ground-state rotational constants, and the equilibrium (re) bond lengths were estimated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infrared spectra of the trans and the cis isomers of nitrous acid, both HONO and DONO, have been observed in the gas phase using a Fourier transform interferometer with a resolution of about 0.05 cm−1 from 4000 to 500 cm−1. Rotational analyses are reported on eleven of the fundamentals and some overtones.