89 resultados para Fuzzy rules
Resumo:
The application of automatic segmentation methods in lesion detection is desirable. However, such methods are restricted by intensity similarities between lesioned and healthy brain tissue. Using multi-spectral magnetic resonance imaging (MRI) modalities may overcome this problem but it is not always practicable. In this article, a lesion detection approach requiring a single MRI modality is presented, which is an improved method based on a recent publication. This new method assumes that a low similarity should be found in the regions of lesions when the likeness between an intensity based fuzzy segmentation and a location based tissue probabilities is measured. The usage of a normalized similarity measurement enables the current method to fine-tune the threshold for lesion detection, thus maximizing the possibility of reaching high detection accuracy. Importantly, an extra cleaning step is included in the current approach which removes enlarged ventricles from detected lesions. The performance investigation using simulated lesions demonstrated that not only the majority of lesions were well detected but also normal tissues were identified effectively. Tests on images acquired in stroke patients further confirmed the strength of the method in lesion detection. When compared with the previous version, the current approach showed a higher sensitivity in detecting small lesions and had less false positives around the ventricle and the edge of the brain
Resumo:
The guiding principle of compulsory purchase of interests in land in England and Wales is that of fairness, best stated in the words of Lord Justice Scott in Horn v Sunderland Corporation when he said that the owner has “the right to be put, so far as money can do it, in the same position as if his land had not been taken from him”. In many instances, land acquired by compulsion subsequently becomes surplus to the requirements of the acquiring authority. This may be because the intended development scheme was scrapped, or substantially modified, or that after the passage of time the use of the land for which the purchase took place is no longer required. More controversially it may be that for ‘operational reasons’ the acquiring authority knowingly purchased more land than was required for the scheme. Under these circumstances, the Crichel Down Rules (‘the Rules’) require government departments and other statutory bodies to offer back to the former owners or their successors, any land previously so acquired by, or under the threat of, compulsory purchase.
Resumo:
Opportunistic land encroachment occurs in many low-income countries, gradually yet pervasively, until discrete areas of common land disappear. This paper, motivated by field observations in Karnataka, India, demonstrates that such an evolution of property rights from common to private may be efficient when the boundaries between common and private land are poorly defined, or ‘‘fuzzy.’’ Using a multi-period optimization model, and introducing the concept of stock and flow enforcement, I show how effectiveness of enforcement effort, whether encroachment is reversible, and punitive fines, influence whether an area of common land is fully defined and protected or gradually or rapidly encroached.
Resumo:
This paper contributes to a fast growing literature which introduces game theory in the analysis of real option investments in a competitive setting. Specifically, in this paper we focus on the issue of multiple equilibria and on the implications that different equilibrium selections may have for the pricing of real options and for subsequent strategic decisions. We present some theoretical results of the necessary conditions to have multiple equilibria and we show under which conditions different tie-breaking rules result in different economic decisions. We then present a numerical exercise using the in formation set obtained on a real estate development in South London. We find that risk aversion reduces option value and this reduction decreases marginally as negative externalities decrease.
Resumo:
This paper summarises an initial report carried out by the Housing Business Research Group, of the University of Reading into Design and Build procurement and a number of research projects undertaken by the national federation of Housing Associations (NFHA), into their members' development programmes. The paper collates existing statistics from these sources and examines the way in which Design and Build procurement can be adapted for the provision of social housing. The paper comments on these changes and questions how risk averting the adopted strategies are in relation to long term housing business management issues arising from the quality of the product produced by the new system.
Resumo:
Risk and uncertainty are, to say the least, poorly considered by most individuals involved in real estate analysis - in both development and investment appraisal. Surveyors continue to express 'uncertainty' about the value (risk) of using relatively objective methods of analysis to account for these factors. These methods attempt to identify the risk elements more explicitly. Conventionally this is done by deriving probability distributions for the uncontrolled variables in the system. A suggested 'new' way of "being able to express our uncertainty or slight vagueness about some of the qualitative judgements and not entirely certain data required in the course of the problem..." uses the application of fuzzy logic. This paper discusses and demonstrates the terminology and methodology of fuzzy analysis. In particular it attempts a comparison of the procedures with those used in 'conventional' risk analysis approaches and critically investigates whether a fuzzy approach offers an alternative to the use of probability based analysis for dealing with aspects of risk and uncertainty in real estate analysis
Resumo:
The Distributed Rule Induction (DRI) project at the University of Portsmouth is concerned with distributed data mining algorithms for automatically generating rules of all kinds. In this paper we present a system architecture and its implementation for inducing modular classification rules in parallel in a local area network using a distributed blackboard system. We present initial results of a prototype implementation based on the Prism algorithm.
Resumo:
Inducing rules from very large datasets is one of the most challenging areas in data mining. Several approaches exist to scaling up classification rule induction to large datasets, namely data reduction and the parallelisation of classification rule induction algorithms. In the area of parallelisation of classification rule induction algorithms most of the work has been concentrated on the Top Down Induction of Decision Trees (TDIDT), also known as the ‘divide and conquer’ approach. However powerful alternative algorithms exist that induce modular rules. Most of these alternative algorithms follow the ‘separate and conquer’ approach of inducing rules, but very little work has been done to make the ‘separate and conquer’ approach scale better on large training data. This paper examines the potential of the recently developed blackboard based J-PMCRI methodology for parallelising modular classification rule induction algorithms that follow the ‘separate and conquer’ approach. A concrete implementation of the methodology is evaluated empirically on very large datasets.
Resumo:
The Prism family of algorithms induces modular classification rules which, in contrast to decision tree induction algorithms, do not necessarily fit together into a decision tree structure. Classifiers induced by Prism algorithms achieve a comparable accuracy compared with decision trees and in some cases even outperform decision trees. Both kinds of algorithms tend to overfit on large and noisy datasets and this has led to the development of pruning methods. Pruning methods use various metrics to truncate decision trees or to eliminate whole rules or single rule terms from a Prism rule set. For decision trees many pre-pruning and postpruning methods exist, however for Prism algorithms only one pre-pruning method has been developed, J-pruning. Recent work with Prism algorithms examined J-pruning in the context of very large datasets and found that the current method does not use its full potential. This paper revisits the J-pruning method for the Prism family of algorithms and develops a new pruning method Jmax-pruning, discusses it in theoretical terms and evaluates it empirically.
Resumo:
The Prism family of algorithms induces modular classification rules in contrast to the Top Down Induction of Decision Trees (TDIDT) approach which induces classification rules in the intermediate form of a tree structure. Both approaches achieve a comparable classification accuracy. However in some cases Prism outperforms TDIDT. For both approaches pre-pruning facilities have been developed in order to prevent the induced classifiers from overfitting on noisy datasets, by cutting rule terms or whole rules or by truncating decision trees according to certain metrics. There have been many pre-pruning mechanisms developed for the TDIDT approach, but for the Prism family the only existing pre-pruning facility is J-pruning. J-pruning not only works on Prism algorithms but also on TDIDT. Although it has been shown that J-pruning produces good results, this work points out that J-pruning does not use its full potential. The original J-pruning facility is examined and the use of a new pre-pruning facility, called Jmax-pruning, is proposed and evaluated empirically. A possible pre-pruning facility for TDIDT based on Jmax-pruning is also discussed.
Resumo:
In order to gain knowledge from large databases, scalable data mining technologies are needed. Data are captured on a large scale and thus databases are increasing at a fast pace. This leads to the utilisation of parallel computing technologies in order to cope with large amounts of data. In the area of classification rule induction, parallelisation of classification rules has focused on the divide and conquer approach, also known as the Top Down Induction of Decision Trees (TDIDT). An alternative approach to classification rule induction is separate and conquer which has only recently been in the focus of parallelisation. This work introduces and evaluates empirically a framework for the parallel induction of classification rules, generated by members of the Prism family of algorithms. All members of the Prism family of algorithms follow the separate and conquer approach.