66 resultados para Fungal mastitis
Resumo:
A detached leaf bioassay was used to determine the influence of several film forming polymers and a conventional triazole fungicide on apple scab (Venturia inaequalis (Cooke) G. Wint.) development under laboratory in vitro conditions, supported by two field trials using established apple cv. Golden Delicious to further assess the efficacy of foliar applied film forming polymers as scab protectant compounds. All film forming polymers used in this investigation (Bond, Designer, Nu-Film P, Spray Gard, Moisturin, Companion PCT12) inhibited germination of conidia, subsequent formation of appressoria and reduced leaf scab severity using a detached leaf bioassay. Regardless of treatment, there were no obvious trends in the percentage of conidia with one to four appressoria 5 days after inoculation. The synthetic fungicide penconazole resulted in the greatest levels of germination inhibition, appressorium development and least leaf scab severity. Under field conditions, scab severity on leaves and fruit of apple cv. Golden Delicious treated with a film forming polymer (Bond, Spray Gard, Moisturin) was less than on untreated controls. However, greatest protection in both field trials was provided by the synthetic fungicide penconazole. Higher chlorophyll fluorescence Fv/Fm emissions in polymer and penconazole treated trees indicated less damage to the leaf photosynthetic system as a result of fungal invasion. In addition, higher SPAD values as measures of leaf chlorophyll content were recorded in polymer and penconazole treated trees. Application of a film forming polymer or penconazole resulted in a higher apple yield per tree at harvest in both the 2005 and 2006 field trials compared to untreated controls. Results suggest application of an appropriate film forming polymer may provide a useful addition to existing methods of apple scab management. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The potential reproductive value of arbuscular mycorrhizal fungi (Gloinus intraradices and Glomus invermaium), root pathogenic fungi (Rhizoctonia solani and Fusarium culmorum) and saprotrophic fungi (Penicillium hordei and Trichoderma harzianum) were examined for the collembolans Folsomia candida Willem and Folsomia fimetaria L. Dried baker's yeast (Saccharomyces cerevisiae) was used as a reference standard food in laboratory cultures. Collembolan performance was determined as final size, fecundity and population growth rate after when fed the fungal food sources for 31 days. The mycorrhizal fungi gave the least growth and fecundity compared with the other fungi, but G. intraradices gave good fecundity for F. candida. In terms of growth, Baker's yeast was a high-quality food for both adults and juveniles of both species, but it was a poorer food in terms of fecundity of F. candida. Preference of the fungi in all possible pairwise combinations showed that although F. fimetaria did not perform well on Glomus spp. and F. candida did not grow well on Glomus spp. their preference for these fungi did not reflect this. The highest fecundity was seen with the root pathogen F. culmorum. Different quality indicators such as the C:N ratio of the fungal food sources as well as other biological parameters are discussed in relation to their reproductive value and Collembola preferential feeding. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
From 1997 onward, the strobilurin fungicide azoxystrobin was widely used in the main banana-production zone in Costa Rica against Mycosphaerella fijiensis var. difformis causing black Sigatoka of banana. By 2000, isolates of M. fijiensis with resistance to the quinolene oxidase inhibitor fungicides were common on some farms in the area. The cause was a single point mutation from glycine to alanine in the fungal target protein, cytochrome b gene. An amplification refractory mutation system Scorpion quantitative polymerase chain reaction assay was developed and used to determine the frequency of G 143A allele in samples of M. fijiensis. Two hierarchical surveys of spatial variability, in 2001 and 2002,found no significant variation in frequency on spatial scales <10 in. This allowed the frequency of G143A alleles on a farm to be estimated efficiently by averaging single samples taken at two fixed locations. The frequency of G 143A allele in bulk samples from I I farms throughout Costa Rica was determined at 2-month intervals. There was no direct relationship between the number of spray applications and the frequency of G143A on individual farms. Instead, the frequency converged toward regional averages, presumably due to the large-scale mixing of ascospores dispersed by wind. Using trap plants in an area remote from the main producing area, immigration of resistant ascospores was detected as far as 6 km away both with and against the prevailing wind.
Resumo:
Apical leaf necrosis is a physiological process related to nitrogen (N) dynamics in the leaf. Pathogens use leaf nutrients and can thus accelerate this physiological apical necrosis. This process differs from necrosis occurring around pathogen lesions (lesion-induced necrosis), which is a direct result of the interaction between pathogen hyphae and leaf cells. This paper primarily concentrates on apical necrosis, only incorporating lesion-induced necrosis by necessity. The relationship between pathogen dynamics and physiological apical leaf necrosis is modelled through leaf nitrogen dynamics. The specific case of Puccinia triticina infections on Triticum aestivum flag leaves is studied. In the model, conversion of indirectly available N in the form of, for example, leaf cell proteins (N-2(t)) into directly available N (N-1(t), i.e. the form of N that can directly be used by either pathogen or plant sinks) results in apical necrosis. The model reproduces observed trends of disease severity, apical necrosis and green leaf area (GLA) and leaf N dynamics of uninfected and infected leaves. Decreasing the initial amount of directly available N results in earlier necrosis onset and longer necrosis duration. Decreasing the initial amount of indirectly available N, has no effect on necrosis onset and shortens necrosis duration. The model could be used to develop hypotheses on how the disease-GLA relation affects yield loss, which can be tested experimentally. Upon incorporation into crop simulation models, the model might provide a tool to more accurately estimate crop yield and effects of disease management strategies in crops sensitive to fungal pathogens.
Resumo:
Long distance dispersal (LDD) plays an important role in many population processes like colonization, range expansion, and epidemics. LDD of small particles like fungal spores is often a result of turbulent wind dispersal and is best described by functions with power-law behavior in the tails ("fat tailed"). The influence of fat-tailed LDD on population genetic structure is reported in this article. In computer simulations, the population structure generated by power-law dispersal with exponents in the range of -2 to -1, in distinct contrast to that generated by exponential dispersal, has a fractal structure. As the power-law exponent becomes smaller, the distribution of individual genotypes becomes more self-similar at different scales. Common statistics like G(ST) are not well suited to summarizing differences between the population genetic structures. Instead, fractal and self-similarity statistics demonstrated differences in structure arising from fat-tailed and exponential dispersal. When dispersal is fat tailed, a log-log plot of the Simpson index against distance between subpopulations has an approximately constant gradient over a large range of spatial scales. The fractal dimension D-2 is linearly inversely related to the power-law exponent, with a slope of similar to -2. In a large simulation arena, fat-tailed LDD allows colonization of the entire space by all genotypes whereas exponentially bounded dispersal eventually confines all descendants of a single clonal lineage to a relatively small area.
Resumo:
Models of windblown pollen or spore movement are required to predict gene flow from genetically modified (GM) crops and the spread of fungal diseases. We suggest a simple form for a function describing the distance moved by a pollen grain or fungal spore, for use in generic models of dispersal. The function has power-law behaviour over sub-continental distances. We show that air-borne dispersal of rapeseed pollen in two experiments was inconsistent with an exponential model, but was fitted by power-law models, implying a large contribution from distant fields to the catches observed. After allowance for this 'background' by applying Fourier transforms to deconvolve the mixture of distant and local sources, the data were best fit by power-laws with exponents between 1.5 and 2. We also demonstrate that for a simple model of area sources, the median dispersal distance is a function of field radius and that measurement from the source edge can be misleading. Using an inverse-square dispersal distribution deduced from the experimental data and the distribution of rapeseed fields deduced by remote sensing, we successfully predict observed rapeseed pollen density in the city centres of Derby and Leicester (UK).
Resumo:
Physical, cultural and biological methods for weed control have developed largely independently and are often concerned with weed control in different systems: physical and cultural control in annual crops and biocontrol in extensive grasslands. We discuss the strengths and limitations of four physical and cultural methods for weed control: mechanical, thermal, cutting, and intercropping, and the advantages and disadvantages of combining biological control with them. These physical and cultural control methods may increase soil nitrogen levels and alter microclimate at soil level; this may be of benefit to biocontrol agents, although physical disturbance to the soil and plant damage may be detrimental. Some weeds escape control by these methods; we suggest that these weeds may be controlled by biocontrol agents. It will be easiest to combine biological control with. re and cutting in grasslands; within arable systems it would be most promising to combine biological control (especially using seed predators and foliar pathogens) with cover-cropping, and mechanical weeding combined with foliar bacterial and possibly foliar fungal pathogens. We stress the need to consider the timing of application of combined control methods in order to cause least damage to the biocontrol agent, along with maximum damage to the weed and to consider the wider implications of these different weed control methods.
Resumo:
A mathematical growth model for the batch solid-state fermentation process for fungal tannase production was developed and tested experimentally. The unstructured model describes the uptake and growth kinetics of Penicillium glabrum in an impregnated polyurethane foam substrate system. In general, good agreement between the experimental data and model simulations was obtained. Biomass, tannase and spore production are described by logistic kinetics with a time delay between biomass production and tannase and spore formation. Possible induction mechanisms for the latter are proposed. Hydrolysis of tannic acid, the main carbon source in the substrate system, is reasonably well described with Michaelis-Menten kinetics with time-varying enzyme concentration but a more complex reaction mechanism is suspected. The metabolism of gallic acid, a tannase-hydrolysis product of tannic acid, was shown to be growth limiting during the main growth phase. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
An atoxigenic strain of Penicillium camemberti was superficially inoculated on fermented sausages in an attempt to improve their sensory properties. The growth of this mould on the surface of the sausages resulted in an intense proteolysis and lipolysis, which caused an increase in the concentration of free amino acids, free fatty acids (FFA) and volatile compounds. Many of these were derived from amino acid catabolism and were responsible for the "ripened flavour", i.e. branched aldehydes and the corresponding alcohols, acids and esters. The development of the fungal mycelia on the surface of the sausages also protected lipids from oxidation, resulting in both lower 2-thiobarbituric acid (TBARS) values and lipid oxidation-derived compounds, such as aliphatic aldehydes and alcohols. The sensory analysis of superficially inoculated sausages showed clear improvements in odour and flavour and, as a consequence, in the overall quality of the sausages. Therefore, this strain is proposed as a potential starter culture for dry fermented sausage production. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
Repeat induced point mutation (RIP), a mechanism causing hypermutation of repetitive DNA sequences in fungi, has been described as a ‘genome defense’ which functions to inactivate mobile elements and inhibit their deleterious effects on genome stability. Here we address the interactions between RIP and transposable elements in the Microbotryum violaceum species complex. Ten strains of M. violaceum, most of which belong to different species of the fungus, were all found to contain intragenomic populations of copia-like retrotransposons. Intragenomic DNA sequence variation among the copia-like elements was analyzed for evidence of RIP. Among species with RIP, there was no significant correlation between the frequency of RIP-induced mutations and inferred transposition rate based on diversity. Two strains of M. violaceum, from two different plant species but belonging to the same fungal lineage, contained copia-like elements with very low diversity, as would result from a high transposition rate, and these were also unique in showing no evidence of the hypermutation patterns indicative of the RIP genome defense. In this species, evidence of RIP was also absent from a Class II helitron-like transposable element. However, unexpectedly the absolute repetitive element load was lower than in other strains.
Resumo:
The ability to resist or avoid natural enemy attack is a critically important insect life history trait, yet little is understood of how these traits may be affected by temperature. This study investigated how different genotypes of the pea aphid Acyrthosiphon pisum Harris, a pest of leguminous crops, varied in resistance to three different natural enemies (a fungal pathogen, two species of parasitoid wasp and a coccinellid beetle), and whether expression of resistance was influenced by temperature. Substantial clonal variation in resistance to the three natural enemies was found. Temperature influenced the number of aphids succumbing to the fungal pathogen Erynia neoaphidis Remaudiere & Hermebert, with resistance increasing at higher temperatures (18 vs. 28degreesC). A temperature difference of 5degreesC (18 vs. 23degreesC) did not affect the ability of A. pisum to resist attack by the parasitoids Aphidius ervi Haliday and A. eadyi Stary Gonzalez & Hall. Escape behaviour from foraging coccinellid beetles (Hippodamia convergens Guerin-Meneville) was not directly influenced by aphid clone or temperature (16 vs. 21degreesC). However, there were significant interactions between clone and temperature (while most clones did not respond to temperature, one was less likely to escape at 16degreesC), and between aphid clone and ladybird presence (some clones showed greater changes in escape behaviour in response to the presence of foraging coccinellids than others). Therefore, while larger temperature differences may alter interactions between Acyrthosiphon pisum and an entomopathogen, there is little evidence to suggest that smaller changes in temperature will alter pea aphid-natural enemy interactions.
Resumo:
We are social beings. What we do and don’t do, what we think, the decisions we take are all influenced by those around us. Sometimes we are conscious of those influences, often we are not. Those who influence us are not just our close family and friends, our own social and professional networks, but the wider societies and cultures to which we belong. The goals we espouse, the values we hold, the image we have of ourselves are all molded to a large extent by our interactions and relationships with other people. The social sciences offer a range of concepts and tools for exploring these influences. In this paper, I introduce some of these and illustrate them with recent research I and my colleagues have been doing at the University of Reading among livestock farmers in the UK, with a view to providing insights that can then be used to plan and implement more effective interventions.
Resumo:
The Red Queen metaphor has species accumulating small changes to keep up with a continually changing environment, with speciation occurring at a constant rate. This constant-rate claim is now tested against four competing models, using 101 phylogenies of animal, plant and fungal taxa. The results provide a new interpretation of the Red Queen; a view linking speciation to rare stochastic events that cause reproductive isolation.
Resumo:
The Acari is the most numerous and diverse group of the subphylum Chelicerata. With approximately 55 000 described species (and estimates of up to 1 million extant species), their adaptations for parasitism, phytophagy, mycophagy, saprophagy and predation rival other arthropods and challenge us with a wide variety of biological interactions. While a few studies have unravelled the nature of some endosymbiotic associations between mites or ticks and prokaryotes, almost nothing has been done yet regarding acarine eukaryotic ectosymbionts. Microbial ectosymbionts can benefit their hosts by providing nutrients, by aiding digestion, by enhancing communication, by assisting in mating and/or fertilization, by protecting their host against pathogenic microorganisms, against predation and so on. In this sketch, we introduce a number of described cases of fungal and protist ectosymbionts and discuss the role they might play in the life of their acarine hosts.
Resumo:
Small propagules like pollen or fungal spores may be dispersed by the wind over distances of hundreds or thousands of kilometres,even though the median dispersal may be only a few metres. Such long-distance dispersal is a stochastic event which may be exceptionally important in shaping a population. It has been found repeatedly in field studies that subpopulations of wind-dispersed fungal pathogens virulent on cultivars with newly introduced, effective resistance genes are dominated by one or very few genotypes. The role of propagule dispersal distributions with distinct behaviour at long distances in generating this characteristic population structure was studied by computer simulation of dispersal of clonal organisms in a heterogeneous environment with fields of unselective and selective hosts. Power-law distributions generated founder events in which new, virulent genotypes rapidly colonized fields of resistant crop varieties and subsequently dominated the pathogen population on both selective and unselective varieties, in agreement with data on rust and powdery mildew fungi. An exponential dispersal function, with extremely rare dispersal over long distances, resulted in slower colonization of resistant varieties by virulent pathogens or even no colonization if the distance between susceptible source and resistant target fields was sufficiently large. The founder events resulting from long-distance dispersal were highly stochastic and exact quantitative prediction of genotype frequencies will therefore always be difficult.