51 resultados para Frequency response curve
Resumo:
BACKGROUND:Apolioprotein E (APOE) genotype is reported to influence a person's fasting lipid profile and potentially the response to dietary fat manipulation. The impact of APOE genotype on the responsiveness to meals of varying fat composition is unknown. OBJECTIVE:We examined the effect of meals containing 50 g of fat rich in saturated fatty acids (SFAs), unsaturated fatty acids (UNSATs), or SFAs with fish oil (SFA-FO) on postprandial lipemia. METHOD:A randomized, controlled, test meal study was performed in men recruited according to the APOE genotype (n = 10 APOE3/3, n = 11 APOE3/E4). RESULTS:For the serum apoE response (meal × genotype interaction P = 0.038), concentrations were on average 8% lower after the UNSAT than the SFA-FO meal in APOE4 carriers (P = 0.015) only. In the genotype groups combined, there was a delay in the time to reach maximum triacylglycerol (TG) concentration (mean ± SEM: 313 ± 25 vs. 266 ± 27 min) and higher maximum nonesterified fatty acid (0.73 ± 0.05 vs. 0.60 ± 0.03 mmol/L) and glucose (7.92 ± 0.22 vs. 7.25 ± 0.22 mmol/L) concentrations after the SFA than the UNSAT meal, respectively (P ≤ 0.05). In the Svedberg flotation rate 60-400 TG-rich lipoprotein fraction, meal × genotype interactions were observed for incremental area under the curve (IAUC) for the TG (P = 0.038) and apoE (P = 0.016) responses with a 58% lower apoE IAUC after the UNSAT than the SFA meal (P = 0.017) in the E4 carriers. CONCLUSIONS:Our data indicate that APOE genotype had a modest impact on the postprandial response to meals of varying fat composition in normolipidemic men. The physiologic importance of greater apoE concentrations after the SFA-rich meals in APOE4 carriers may reflect an impact on TG-rich lipoprotein clearance from the circulation. This trial was registered at clinicaltrials.gov as NCT01522482.
Resumo:
A practical single-carrier (SC) block transmission with frequency domain equalisation (FDE) system can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such Hammerstein channels, the standard SC-FDE scheme no longer works. We propose a novel Bspline neural network based nonlinear SC-FDE scheme for Hammerstein channels. In particular, we model the nonlinear HPA, which represents the complex-valued static nonlinearity of the Hammerstein channel, by two real-valued B-spline neural networks, one for modelling the nonlinear amplitude response of the HPA and the other for the nonlinear phase response of the HPA. We then develop an efficient alternating least squares algorithm for estimating the parameters of the Hammerstein channel, including the channel impulse response coefficients and the parameters of the two B-spline models. Moreover, we also use another real-valued B-spline neural network to model the inversion of the HPA’s nonlinear amplitude response, and the parameters of this inverting B-spline model can be estimated using the standard least squares algorithm based on the pseudo training data obtained as a byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse Bspline neural network model obtained in time domain. The effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels is demonstrated in a simulation study.
Resumo:
Six Australian native herbaceous perennial legumes (Lotus australis, Swainsona colutoides, Swainsona swainsonioides, Cullen tenax, Glycine tabacina and Kennedia prorepens) were assessed in the glasshouse for nutritive value, soluble condensed tannins and production of herbage in response to three cutting treatments (regrowth harvested every 4 and 6 weeks and plants left uncut for 12 weeks). The Mediterranean perennial legumes Medicago sativa and Lotus corniculatus were also included. Dry matter (DM) yield of some native legumes was comparable to L. corniculatus, but M. sativa produced more DM than all species except S. swainsonioides after 12 weeks of regrowth. Dry matter yield of all native legumes decreased with increased cutting frequency, indicating a susceptibility to frequent defoliation. Shoot in vitro dry matter digestibility (DMD) was high (>70%) in most native legumes, except G. tabacina (65%) and K. prorepens (55%). Crude protein ranged from 21-28% for all legumes except K. prorepens (12%). More frequent cutting resulted in higher DMD and crude protein in all species, except for the DMD of C. tenax and L. australis, which did not change. Concentrations of soluble condensed tannins were 2-9 g/kg DM in the Lotus spp., 10-18 g/kg DM in K. prorepens and negligible (<1 g/kg) in the other legumes. Of the native species, C. tenax, S. swainsonioides and L. australis showed the most promise for use as forage plants and further evaluation under field conditions is now warranted.
Resumo:
The El Niño/Southern Oscillation is Earth’s most prominent source of interannual climate variability, alternating irregularly between El Niño and La Niña, and resulting in global disruption of weather patterns, ecosystems, fisheries and agriculture1, 2, 3, 4, 5. The 1998–1999 extreme La Niña event that followed the 1997–1998 extreme El Niño event6 switched extreme El Niño-induced severe droughts to devastating floods in western Pacific countries, and vice versa in the southwestern United States4, 7. During extreme La Niña events, cold sea surface conditions develop in the central Pacific8, 9, creating an enhanced temperature gradient from the Maritime continent to the central Pacific. Recent studies have revealed robust changes in El Niño characteristics in response to simulated future greenhouse warming10, 11, 12, but how La Niña will change remains unclear. Here we present climate modelling evidence, from simulations conducted for the Coupled Model Intercomparison Project phase 5 (ref. 13), for a near doubling in the frequency of future extreme La Niña events, from one in every 23 years to one in every 13 years. This occurs because projected faster mean warming of the Maritime continent than the central Pacific, enhanced upper ocean vertical temperature gradients, and increased frequency of extreme El Niño events are conducive to development of the extreme La Niña events. Approximately 75% of the increase occurs in years following extreme El Niño events, thus projecting more frequent swings between opposite extremes from one year to the next.
Resumo:
El Niño events are a prominent feature of climate variability with global climatic impacts. The 1997/98 episode, often referred to as ‘the climate event of the twentieth century’1, 2, and the 1982/83 extreme El Niño3, featured a pronounced eastward extension of the west Pacific warm pool and development of atmospheric convection, and hence a huge rainfall increase, in the usually cold and dry equatorial eastern Pacific. Such a massive reorganization of atmospheric convection, which we define as an extreme El Niño, severely disrupted global weather patterns, affecting ecosystems4, 5, agriculture6, tropical cyclones, drought, bushfires, floods and other extreme weather events worldwide3, 7, 8, 9. Potential future changes in such extreme El Niño occurrences could have profound socio-economic consequences. Here we present climate modelling evidence for a doubling in the occurrences in the future in response to greenhouse warming. We estimate the change by aggregating results from climate models in the Coupled Model Intercomparison Project phases 3 (CMIP3; ref. 10) and 5 (CMIP5; ref. 11) multi-model databases, and a perturbed physics ensemble12. The increased frequency arises from a projected surface warming over the eastern equatorial Pacific that occurs faster than in the surrounding ocean waters13, 14, facilitating more occurrences of atmospheric convection in the eastern equatorial region.
Resumo:
Lipoprotein lipase (LPL) is a key rate-limiting enzyme for the hydrolysis of triacylglycerol (TAG) in chylomicrons and very low-density lipoprotein. Given that postprandial assessment of lipoprotein metabolism may provide a more physiological perspective of disturbances in lipoprotein homeostasis compared to assessment in the fasting state, we have investigated the influence of two commonly studied LPL polymorphisms (rs320, HindIII; rs328, S447X) on postprandial lipaemia, in 261 participants using a standard sequential meal challenge. S447 homozygotes had lower fasting HDL-C (p = 0.015) and a trend for higher fasting TAG (p = 0.057) concentrations relative to the 447X allele carriers. In the postprandial state, there was an association of the S447X polymorphism with postprandial TAG and glucose, where S447 homozygotes had 12% higher TAG area under the curve (AUC) (p = 0.037), 8.4% higher glucose-AUC (p = 0.006) and 22% higher glucose-incremental area under the curve (IAUC) (p = 0.042). A significant gene–gender interaction was observed for fasting TAG (p = 0.004), TAG-AUC (Pinteraction = 0.004) and TAG-IAUC (Pinteraction = 0.016), where associations were only evident in men. In conclusion, our study provides novel findings of an effect of LPL S447X polymorphism on the postprandial glucose and gender-specific impact of the polymorphism on fasting and postprandial TAG concentrations in response to sequential meal challenge in healthy participants