61 resultados para Free low molecular weight polyphenols
Resumo:
Eighty-eight multiparous sows were used to evaluate whether type and timing of oil supplementation during gestation influences the incidence of low birth weight (LBW). Sows were allocated (eight per treatment) commercial sow pellets (3 kg/d; control diet) or an experimental diet consisting of control diet plus 10 % extra energy in the form of excess pellets, palm oil, olive oil (OO), sunflower oil (SO) or fish oil; experimental diets were fed during either the first half (G1) or second half (G2) of gestation. Growth performance and endocrine profile of LBW ( < 1·09 kg) and normal birth weight (NBW; 1·46–1·64 kg) offspring were compared. Maternal dietary supplementation altered the distribution curve for piglet birth weight. SOG1 sows had a greater proportion of LBW piglets (P < 0·05), whilst it was reduced in the OOG1 group (P < 0·05). Growth rate of LBW piglets was lower compared with their NBW siblings (P < 0·05) when dietary supplementation was offered in G2 but were similar for G1. At birth, LBW offspring of supplemented animals possessed more fat compared with the control group (P < 0·05); LBW offspring of control animals exhibited a more rapid decline in fat free mass/kg prior to weaning. Plasma metabolites and insulin concentrations were influenced by maternal diet and birth weight. In conclusion, maternal dietary supplementation altered the distribution of piglet birth weights and improved the energy status of LBW piglets. Supplementation with MUFA during G1 reduced the incidence of LBW, whereas PUFA had the reverse effect.
Resumo:
The linear viscoelastic (LVE) spectrum is one of the primary fingerprints of polymer solutions and melts, carrying information about most relaxation processes in the system. Many single chain theories and models start with predicting the LVE spectrum to validate their assumptions. However, until now, no reliable linear stress relaxation data were available from simulations of multichain systems. In this work, we propose a new efficient way to calculate a wide variety of correlation functions and mean-square displacements during simulations without significant additional CPU cost. Using this method, we calculate stress−stress autocorrelation functions for a simple bead−spring model of polymer melt for a wide range of chain lengths, densities, temperatures, and chain stiffnesses. The obtained stress−stress autocorrelation functions were compared with the single chain slip−spring model in order to obtain entanglement related parameters, such as the plateau modulus or the molecular weight between entanglements. Then, the dependence of the plateau modulus on the packing length is discussed. We have also identified three different contributions to the stress relaxation: bond length relaxation, colloidal and polymeric. Their dependence on the density and the temperature is demonstrated for short unentangled systems without inertia.
Resumo:
Free-radical copolymerization of 2-hydroxyethyl methacrylate with 2-hydroxyethyl acrylate can be successively utilized for the synthesis of water-soluble polymers and hydrogels with excellent physicochemical properties, thus showing promise for pharmaceutical and biomedical applications. In the work presented it has been demonstrated that water-soluble copolymers based on 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate exhibit lower critical solution temperature in aqueous solutions, whereas the corresponding high molecular weight homopolymers do not have this unique property. The temperature-induced transitions observed upon heating the aqueous solutions of these copolymers proceed via liquid−liquid phase separation. The hydrogels were also synthesized by copolymerizing 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate in the absence of a bifunctional cross-linker. The cross-linking of these copolymers during copolymerization is believed to be due to the presence of bifunctional admixtures or transesterification reactions. Transparency, swelling behavior, mechanical properties, and porosity of the hydrogels are dependent upon the monomer ratio in the copolymers. Hydrogel samples containing more 2-hydroxyethyl methacrylate are less transparent, have lower swelling capacity, higher elastic moduli, and pores of smaller size. The assessment of the biocompatibility of the copolymers using the slug mucosal irritation test revealed that they are also less irritant than poly(acrylic acid).
Resumo:
A novel protocol for rapid and efficient purification of antimicrobial peptides from plant seedlings has been developed. Two peptides with antimicrobial activity, designated p1 and p2, were purified nearly to homogeneity from Scots pine seedlings by a combination of sulfuric acid extraction, ammonium sulfate precipitation, heat-inactivation and ion-exchange chromatography on phosphocellulose. Purified proteins had molecular masses of 11 kDa (p1) and 5.8 kDa (p2) and were identified by mass spectrometry as defensin and lipid-transfer protein, respectively. We demonstrated their growth inhibitory effects against a group of phytopathogenic fungi. Furthermore, we report for the first time molecular cloning and characterization of defensin I cDNA from Scots pine. A cDNA expression library from 7 days Scots pine seedlings was generated and used to isolate a cDNA clone corresponding to Scots pine defensin, termed PsDef1. The full-length coding sequence of PsDef1 is 252 bp in length and has an open reading frame capable to encode a protein of 83 amino residues. The deduced sequence has the typical features of plant defensins, including an endoplasmic reticulum signal sequence of 33 aa, followed by a characteristic defensin domain of 50 amino acids representing its active form. The calculated molecular weight of the mature form of PsDef1 is 5601.6 Da, which correlates well with the results of SDS-PAGE analysis. Finally, the antimicrobial properties of PsDef1 against a panel of fungi and bacteria define it as a member of the morphogenic group of plant defensins. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Stirred, pH controlled batch cultures were carried out with faecal inocula and various chitosans to investigate the fermentation of chitosan derivatives by the human gut flora. Changes in bacterial levels and short chain fatty acids were measured over time. Low, medium and high molecular weight chitosan caused a decrease in bacteroides, bifidobacteria, clostridia and lactobacilli. A similar pattern was seen with chitosan oligosaccharide (COS). Butyrate levels also decreased. A three-stage fermentation model of the human colon was used for investigation of the metabolism of COS. In a region representing the proximal colon, clostridia decreased while lactobacilli increased. In the region representing the transverse colon, bacteroides and clostridia increased. Distally a small increase in bacteroides occurred. Butyrate levels increased. Under the highly competitive conditions of the human colon, many members of the microflora, are unable to compete for chitosans of low, medium or high molecular weight. COS were more easily utilised and when added to an in vitro colonic model led to increased production of butyrate, but some populations of potentially detrimental bacteria also increased. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Samples were taken at each stage of brewing (malt, milling, mashing, wort separation, hop addition, boiling, whirlpool, dilution, fermentation, warm rest, chill-lagering, beer filtration, carbonation and bottling, pasteurization, and storage). The level of antioxidant activity of unfractionated, low-molecular-mass (LMM) and high-molecular-mass (HMM) fractions was measured by the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfortic acid) radical cation (ABTS(.+)) and ferric-reducing antioxidant power (FRAP) procedures. Polyphenol levels were assessed by HPLC. The LMM fraction (<5 kDa) was responsible for similar to80% of the level of antioxidant activity of the unfractionated malt and beer samples. In the unfractionated samples, significant decreases (P < 0.001) in antioxidant activity levels were observed after milling and beer filtration, with the decrease after beer filtration being accompanied by a significant decrease (P > 0.001) in catechin and ferulic acid levels. Increases in antioxidant activity levels were observed after mashing, boiling, fermentation, chill-lagering, and pasteurization, in line with previous studies on lager. Additionally, increases in the level of antioxidant activity occurred after wort separation and carbonation and bottling and were accompanied by increases in levels of most monitored polyphenols. Data from the ABTS(.-) and FRAP assays indicated that the compounds contributing to the levels of antioxidant activity responded differently in the two procedures. Levels of ferulic, vanillic, and chlorogenic acids and catechin accounted for 45-61% of the variation in antioxidant activity levels.
Resumo:
Aims: The study of peptidase, esterase and caseinolytic activity of Lactobacillus paracasei subsp. paracasei, Debaryomyces hansenii and Sacchromyces cerevisiae isolates from Feta cheese brine. Methods and Results: Cell-free extracts from four strains of Lact. paracasei subsp. paracasei, four strains of D. hansenii and three strains of S. cerevisiae, isolated from Feta cheese brine were tested for their proteolytic and esterase enzyme activities. Lactobacillus paracasei subsp. paracasei strains had intracellular aminopeptidase, dipeptidyl aminopeptidase, dipeptidase, endopeptidase and carboxypeptidase activities. Esterases were detected in three of four strains of lactobacilli and their activities were smaller with higher molecular weight fatty acids. The strains of yeasts did not exhibit endopeptidase as well as dipeptidase activities except on Pro-Leu. Their intracellular proteolytic activity was higher than that of lactobacilli. Esterases from yeasts preferentially degraded short chain fatty acids. Lactobacilli degraded preferentially beta-casein. Caseinolytic activity of yeasts was higher than that of lactobacilli. Conclusions: The results suggest that Lact. paracasei subsp. paracasei and yeasts may contribute to the development of flavour in Feta cheese. Significance and impact of the Study: Selected strains could be used as adjunct starters to make high quality Feta cheese.
Resumo:
1,6-alpha-D-Mannosidase from Aspergillits phoenicis was purified by anion-exchange chromatography, chromatofocussing and size-exclusion chromatography. The apparent molecular weight was 74 kDa by SDS-PAGE and 81 kDa by native-PAGE. The isoelectric point was 4.6. 1,6-alpha-D-Mannosidase had a temperature optimum of 60 degrees C, a pH optimum of 4.0-4.5. a K-m of 14 mM with alpha-D-Manp-(1 -> 6)-D-Manp as substrate. It was strongly inhibited by Mn2+ and did not need Ca2+ or any other metal cofactor of those tested. The enzyme cleaves specifically (1 -> 6)-linked mannobiose and has no activity towards any other linkages, p-nitrophenyl-alpha-D-mannopyranoside or baker's yeast mannan. 1,3(1,6)-alpha-D-Mannosidase from A. phoenicis was purified by anion-exchange chromatography, chromatofocus sing and size-exclusion chromatography. The apparent molecular weight was 97 kDa by SDS-PAGE and 110 kDa by native-PAGE. The 1,3(1,6)-alpha-D-mannosidase enzyme existed as two charge isomers or isoforms. The isoelectric points of these were 4.3 and 4.8 by isoelectric focussing. It cleaves alpha-D-Manp-(1 -> 3)-D-Manp 10 times faster than alpha-D-Manp-(1 -> 6)-D-Manp, has very low activity towards p-nitrophenyl-alpha-D-mannopyranoside and baker's yeast mannan, and no activity towards alpha-D-Manp-(1 -> 2)-D-Manp. The activity towards (1 -> 3)-linked mannobiose is strongly activated by 1 mM Ca2+ and inhibited by 10 mM EDTA, while (1 -> 6)-activity is unaffected, indicating that the two activities may be associated with different polypeptides. It is also possible that one polypeptide may have two active sites catalysing distinct activities. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Amphiphilic chitosan-based polymers (M-w < 20 kDa) self-assemble in aqueous media at low micromolar concentrations to give previously unknown micellar clusters of 100-300 nm in size. Micellar clusters comprise smaller 10-30 nm aggregates, and the nanopolarity/drug incorporation efficiency of their hydrophobic domains can be tailored by varying the degree of lipidic derivatization and molecular weight of the carbohydrate. The extent of drug incorporation by these novel micellar clusters is 1 order of magnitude higher than is seen with triblock copolymers, with molar polymer/drug ratios of 1:48 to 1:67. On intravenous injection, the pharmacodynamic activity of a carbohydrate propofol formulation is increased by 1 order of magnitude when compared to a commercial emulsion formulation, and on topical ocular application of a carbohydrate prednisolone formulation, initial drug aqueous humor levels are similar to those found with a 10-fold dose of prednisolone suspension.
Resumo:
Epidemiological studies suggest that low-birth weight infants show poor neonatal growth and increased susceptibility to metabolic syndrome, in particular, obesity and diabetes. Adipose tissue development is regulated by many genes, including members of the peroxisome proliferator-activated receptor (PPAR) and the fatty acid-binding protein (FABP) families. The aim of this study was to determine the influence of birth weight on key adipose and skeletal muscle tissue regulating genes. Piglets from 11 litters were ranked according to birth weight and 3 from each litter assigned to small, normal, or large-birth weight groups. Tissue samples were collected on day 7 or 14. Plasma metabolite concentrations and the expression of PPARG2, PPARA, FABP3, and FABP4 genes were determined in subcutaneous adipose tissue and skeletal muscle. Adipocyte number and area were determined histologically. Expression of FABP3 and 4 was significantly reduced in small and large, compared with normal, piglets in adipose tissue on day 7 and in skeletal muscle on day 14. On day 7, PPARA and PPARG2 were significantly reduced in adipose tissue from small and large piglets. Adipose tissue from small piglets contained more adipocytes than normal or large piglets. Birth weight had no effect on adipose tissue and skeletal muscle lipid content. Low-birth weight is associated with tissue-specific and time-dependent effects on lipid-regulating genes as well as morphological changes in adipose tissue. It remains to be seen whether these developmental changes alter an individual's susceptibility to metabolic syndrome.
Resumo:
The conformational properties of the hybrid amphiphile formed by the conjugation of a hydrophobic peptide with four phenylalanine (Phe) residues and hydrophilic poly(ethylene glycol), have been investigated using quantum mechanical calculations and atomistic molecular dynamics simulations. The intrinsic conformational preferences of the peptide were examined using the building-up search procedure combined with B3LYP/ 6-31G(d) geometry optimizations, which led to the identification of 78, 78, and 92 minimum energy structures for the peptides containing one, two, and four Phe residues. These peptides tend to adopt regular organizations involving turn-like motifs that define ribbon or helicallike arrangements. Furthermore, calculations indicate that backbone ... side chain interactions involving the N-H of the amide groups and the pi clouds of the aromatic rings play a crucial role in Phe-containing peptides. On the other hand,MD simulations on the complete amphiphile in aqueous solution showed that the polymer fragment rapidly unfolds maximizing the contacts with the polar solvent, even though the hydrophobic peptide reduce the number of waters of hydration with respect to an individual polymer chain of equivalent molecular weight. In spite of the small effect of the peptide in the hydrodynamic properties of the polymer, we conclude that the two counterparts of the amphiphile tend to organize as independent modules.
Resumo:
Self-complementary tweezer-molecules based on a naphthalenediimide core self-assemble into supramolecular dimers through mutual π–π-stacking and hydrogen bonding. The resulting motif is extremely stable in solution (Ka = 105 M−1), and its attachment to one terminal position of a poly(ethylene glycol) chain leads to a doubling of the polymer's apparent molecular weight.
Resumo:
The starchy endosperm is the major storage tissue in the mature wheat grain and exhibits quantitative and qualitative gradients in composition, with the outermost cell layers being rich in protein, mainly gliadins, and the inner cells being low in protein but enriched in high-molecular-weight (HMW) subunits of glutenin. We have used sequential pearling to produce flour fractions enriched in particular cell layers to determine the protein gradients in four different cultivars grown at two nitrogen levels. The results show that the steepness of the protein gradient is determined by both genetic and nutritional factors, with three high-protein breadmaking cultivars being more responsive to the N treatment than a low-protein cultivar suitable for livestock feed. Nitrogen also affected the relative abundances of the three main classes of wheat prolamins: the sulfur-poor ω-gliadins showed the greatest response to nitrogen and increased evenly across the grain; the HMW subunits also increased in response to nitrogen but proportionally more in the outer layers of the starchy endosperm than near the core, while the sulfur-rich prolamins showed the opposite trend.
Resumo:
Analysis of microbial gene expression during host colonization provides valuable information on the nature of interaction, beneficial or pathogenic, and the adaptive processes involved. Isolation of bacterial mRNA for in planta analysis can be challenging where host nucleic acid may dominate the preparation, or inhibitory compounds affect downstream analysis, e.g., quantitative reverse transcriptase PCR (qPCR), microarray, or RNA-seq. The goal of this work was to optimize the isolation of bacterial mRNA of food-borne pathogens from living plants. Reported methods for recovery of phytopathogen-infected plant material, using hot phenol extraction and high concentration of bacterial inoculation or large amounts of infected tissues, were found to be inappropriate for plant roots inoculated with Escherichia coli O157:H7. The bacterial RNA yields were too low and increased plant material resulted in a dominance of plant RNA in the sample. To improve the yield of bacterial RNA and reduce the number of plants required, an optimized method was developed which combines bead beating with directed bacterial lysis using SDS and lysozyme. Inhibitory plant compounds, such as phenolics and polysaccharides, were counteracted with the addition of high-molecular-weight polyethylene glycol and hexadecyltrimethyl ammonium bromide. The new method increased the total yield of bacterial mRNA substantially and allowed assessment of gene expression by qPCR. This method can be applied to other bacterial species associated with plant roots, and also in the wider context of food safety.
Resumo:
Four alkyl substituted β-lactones were investigated as monomers in ring opening polymerisation to produce a family of poly(3-hydroxyalkanoate)s. Homopolymers were synthesised using a robust aluminium salen catalyst, resulting in polymers with low dispersity (Đ < 1.1) and predictable molecular weights. ABA triblock copolymers were prepared using poly(L-lactic acid) as the A block and the aforementioned poly(3-hydroxyalkanoate) as the B block via a sequential addition method. Characterisation of these copolymers determined they were well controlled with low dispersities and predictable molecular weight. DSC analysis determined copolymers prepared from β-butyrolactone or β-valerolactone yielded polymers with tunable and predictable thermal properties. Copolymers prepared from β-heptanolactone yielded a microphase separated material as indicated by SAXS, with two distinct Tgs. The polymers could be readily cast into flexible films and their improved tensile properties were explored.