95 resultados para Forage harvester
Resumo:
Sixteen multiparous Holstein cows were used to determine the effects of 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi: 0 vs. 1.26 g/kg of total ration dry matter (DM) and dietary crude protein (CP) concentration [14.7% (low) vs. 16.9% (standard), DM basis] on milk yield and composition using a replicated 4 x 4 Latin square design experiment with 4-wk periods. Cows were fed ad libitum a total mixed ration with a 1: 1 forage-to-concentrate ratio (DM basis), and diets provided an estimated 6.71 and 1.86% lysine and methionine, respectively, in metabolizable protein for the low-protein diet and 6.74 and 1.82% in the standard protein diet. Dry matter intake, milk yield, and composition were measured during wk 4 of each period. There were no effects on DM intake, which averaged 24.7 kg/d. There was an interaction between dietary CP and HMBi for milk yield and 3.5% fat-corrected milk (FCM). Feeding HMBi decreased milk and FCM yield when fed with the low-CP diet but did not affect milk or FCM yield when fed with the standard CP diet. Feeding HMBi increased milk protein concentration regardless of diet CP concentration and increased milk protein yield when added to the standard CP diet but not the low-CP diet. The positive effect of HMBi on milk protein yield was only observed at the standard level of dietary CP, suggesting other factors limited the response to HMBi when dietary protein supply was restricted.
Resumo:
Globally, plant-pollinator communities are subject to a diverse array of perturbations and in many temperate and semi-arid systems fire is a dominant structuring force. We present a novel and highly integrated approach, which quantifies, in parallel, the response to fire of pollinator communities, floral communities and floral reward structure. Mt Carmel, Israel is a recognised bee-flower biodiversity hotspot, and using a chronosequence of habitats with differing post-fire ages, we follow the changes in plant-pollinator community organisation from immediately following a burn until full regeneration of vegetation. Initially, fire has a catastrophic effect on these communities, however, recovery is rapid with a peak in diversity of both flowers and bees in the first 2 years post-fire, followed by a steady decline over the next 50 years. The regeneration of floral communities is closely matched by that of their principal pollinators. At the community level we quantify, per unit area of habitat, key parameters of nectar and pollen forage known to be of importance in structuring pollinator communities. Nectar Volume, nectar water content, nectar concentration and the diversity of nectar foraging niches are all greatest immediately following fire with a steady decrease as regeneration proceeds. Temporal changes in energy availability for nectar, pollen, total energy (nectar + pollen) and relative importance of pollen to nectar energy show a similar general decline with site age, however, the pattern is less clear owing to the highly patchy distribution of floral resources. Changes in floral reward structure reflect the general shift from annuals (generally low-reward open access flowers) to perennials (mostly high-reward and restricted access flowers) as post-fire regeneration ensues. The impact of fire on floral communities and their associated rewards have clear implications for pollinator community structure and we discuss this and the role of other disturbance factors on these systems.
Resumo:
Pollinators provide essential ecosystem services, and declines in some pollinator communities around the world have been reported. Understanding the fundamental components defining these communities is essential if conservation and restoration are to be successful. We examined the structure of plant-pollinator communities in a dynamic Mediterranean landscape, comprising a mosaic of post-fire regenerating habitats, and which is a recognized global hotspot for bee diversity. Each community was characterized by a highly skewed species abundance distribution, with a few dominant and many rare bee species, and was consistent with a log series model indicating that a few environmental factors govern the community. Floral community composition, the quantity and quality of forage resources present, and the geographic locality organized bee communities at various levels: (1) The overall structure of the bee community (116 species), as revealed through ordination, was dependent upon nectar resource diversity (defined as the variety of nectar volume-concentration combinations available), the ratio of pollen to nectar energy, floral diversity, floral abundance, and post-fire age. (2) Bee diversity, measured as species richness, was closely linked to floral diversity (especially of annuals), nectar resource diversity, and post-fire age of the habitat. (3) The abundance of the most common species was primarily related to post-fire age, grazing intensity, and nesting substrate availability. Ordination models based on age-characteristic post-fire floral community structure explained 39-50% of overall variation observed in bee community structure. Cluster analysis showed that all the communities shared a high degree of similarity in their species composition (27-59%); however, the geographical location of sites also contributed a smaller but significant component to bee community structure. We conclude that floral resources act in specific and previously unexplored ways to modulate the diversity of the local geographic species pool, with specific disturbance factors, superimposed upon these patterns, mainly affecting the dominant species.
Resumo:
Increased agricultural intensification has led to well-documented declines in the fauna and flora associated with intensive grasslands in the UK. We aimed to quantify the effectiveness of different field margin management strategies for putting bumblebee and butterfly biodiversity back into intensive grasslands. Using four intensive livestock farms in south-west England, we manipulated conventional management practices (addition of inorganic fertilizer, cutting frequency and height, and aftermath grazing) to generate seven grass-based treatments along a gradient of decreasing management intensity. We also tested two more interventionist treatments which introduced sown components into the sward: (i) a cereal, grass and legume mix, and (ii) a diverse conservation mix with kale, mixed cereals, linseed and legumes. These crop mixtures were intended to provide forage and structural resources for pollinators but were not intended to have agronomic value as livestock feed. Using a replicated block design, we monitored bumblebee and butterfly responses in 27 plots (10 x 50 m) in each farm from 2003 to 2006. Bumblebees were most abundant, species-rich and diverse in the sown treatments and virtually absent from the grass-based treatments. The diverse conservation mix treatment supported larger and more diverse bumblebee assemblages than the cereal, grass and legume mix treatment. The sown treatments, and the most extensively managed grass-based treatments, had the highest abundance, species richness and diversity of adult butterflies, whereas butterfly larvae were only found in the grass-based treatments. Bumblebee and butterfly assemblage structure was driven by floral abundance, floral richness, the availability of nectar resources, and sward structure. Only vegetation cover was correlated with butterfly larval abundance. Synthesis and applications. This study has identified management options in the margins of intensive grasslands which can enhance bumblebee and butterfly biodiversity. Extensification of conventional grass management by stopping fertilization, reducing cutting frequency and not grazing, benefits butterflies. However, to enhance bumblebees requires a more interventionist approach in the form of sowing flower-rich habitat. Both approaches are potentially suitable for adoption in agri-environment schemes in the UK and Europe.
Resumo:
An experiment was conducted to determine what effect simple treatments might have on the voluntary intake by goats in Nepal of Eupatorium adenophorum, an invasive weed that is usually only consumed by goats to a very limited extent. Samples of E. adenophorum were collected and either untreated, soaked for 2 h or wilted for 2 h before being oven dried (60 degrees C) and ground. Soaking and wilting had little effect on the chemical composition of E. adenophorum, but did increase (P=0.036) its in vitro organic matter degradability, by approximately 8%. The short-term intake rate (STIR) of treated and untreated E. adenophorum was then estimated with eight goats. Soaking time (from 2 to 24 h) was not related to STIR (r = -0.111, P=0.198), but the time E. adenophorum was left to wilt (from 2 to 48h), was positively related to STIR (r=0.521, P<0.001), with values of STIR (g dry matter/min kg goat liveweight(0.75)) being 0.405, 0.649,1.058, S.E.M. 0.088 for E. adenophorum, that had been wilted for 0, 24 and 48 h respectively (P<0.001). Liveweight change of goats and voluntary intake of E. adenophorum by goats was then estimated with 24 goats. E. adenophorum was fed either unwilted, or wilted for 24 or 48 h. It was fed as the sole forage or as a 3:1 mixture (dry matter basis) with Ficus cunia. There was a linear (P<0.001) and quadratic (P<0.01) increase in the intake of total forage and E. adenophorum with wilting time of E. adenophorum. Offering Ficus cunia increased total forage intake, but decreased E. adenophorum intake (P<0.05). After four weeks, there was virtually no change in goat liveweight and no significant difference between treatments. The results suggest that wilting E adenophorum for 24 h could increase its intake by goats, and thereby increase its usefulness, as a potential source of forage in the dry season of Nepal, when forage scarcity is a common constraint to livestock production. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Four multiparous cows with cannulas in the rumen and proximal duodenum were used in early lactation in a 4 x 4 Latin square experiment to investigate the effect of method of application of a fibrolytic enzyme product on digestive processes and milk production. The cows were given ad libitum a total mixed ration (TMR) composed of 57% (dry matter basis) forage (3:1 corn silage:grass silage) and 43% concentrates. The TMR contained (g/kg dry matter): 274 neutral detergent fiber, 295 starch, 180 crude protein. Treatments were TMR alone or TMR with the enzyme product added (2 kg/1000 kg TMR dry matter) either sprayed on the TMR 1 h before the morning feed (TMR-E), sprayed only on the concentrate the day before feeding (Concs-E), or infused into the rumen for 14 h/d (Rumen-E). There Was no significant effect on either feed intake or milk yield but both were highest on TMR-E. Rumen digestibility of dry matter, organic matter, and starch was unaffected by the enzyme. Digestibility of NDF was lowest on TMR-E in the rumen but highest postruminally. Total Tract digestibility was highest on TMR-E for dry matter, organic matter, and starch but treatment differences were nonsignificant for neutral detergent fiber: Corn silage stover retention time in the rumen was reduced by all enzyme treatments but postruminal transit time vas increased so the decline in total tract retention. time with enzymes was not significant. It is suggested that the tendency for enzymes to reduce particle retention time in the rumen may, by reducing the time available for fibrolysis to occur, at least partly explain the variability in the reported responses to enzyme treatment.
Resumo:
Milk supply from Mexican dairy farms does not meet demand and small-scale farms can contribute toward closing the gap. Two multi-criteria programming techniques, goal programming and compromise programming, were used in a study of small-scale dairy farms in central Mexico. To build the goal and compromise programming models, 4 ordinary linear programming models were also developed, which had objective functions to maximize metabolizable energy for milk production, to maximize margin of income over feed costs, to maximize metabolizable protein for milk production, and to minimize purchased feedstuffs. Neither multicriteria approach was significantly better than the other; however, by applying both models it was possible to perform a more comprehensive analysis of these small-scale dairy systems. The multi-criteria programming models affirm findings from previous work and suggest that a forage strategy based on alfalfa, rye-grass, and corn silage would meet nutrient requirements of the herd. Both models suggested that there is an economic advantage in rescheduling the calving season to the second and third calendar quarters to better synchronize higher demand for nutrients with the period of high forage availability.
Resumo:
A limitation of small-scale dairy systems in central Mexico is that traditional feeding strategies are less effective when nutrient availability varies through the year. In the present work, a linear programming (LP) model that maximizes income over feed cost was developed, and used to evaluate two strategies: the traditional one used by the small-scale dairy producers in Michoacan State, based on fresh lucerne, maize grain and maize straw; and an alternative strategy proposed by the LIP model, based on ryegrass hay, maize silage and maize grain. Biological and economic efficiency for both strategies were evaluated. Results obtained with the traditional strategy agree with previously published work. The alternative strategy did not improve upon the performance of the traditional strategy because of low metabolizable protein content of the maize silage considered by the model. However, the Study recommends improvement of forage quality to increase the efficiency of small-scale dairy systems, rather than looking for concentrate supplementation.
Resumo:
Two trials were conducted to evaluate effects of feeding supplemental fibrolytic enzymes or soluble sugars and malic acid on milk production. In trial 1, 257 cows at four sites were fed a basal diet consisting of no more than 60% of forage DM as corn silage and less than 40% as alfalfa hay. Cows were assigned randomly within site, parity, and two stages of lactation to: 1) control; 2) enzyme A; 3) enzyme B; and 4) soluble sugars and malic acid. There was a 14-d pretreatment and an 84-d treatment period. Enzyme solutions were sprayed on either the forage component or the TMR each day while mixing feed. Trial 2 was similar, except 122 cows at one site in the United Kingdom were fed diets containing forage that was 75% corn silage and 25% grass silage, and all cows began the study between 25 to 31 DIM. Mean milk productions for 233 cows that completed trial 1 were 32.9, 32.5, 32.4, and 32.9 kg/d for control, enzyme A, enzyme B, and soluble sugars and malic acid, respectively. Mean milk productions for 116 cows that completed trial 2 were 28.2, 27.9, 28.8, and 28.4 kg/d, respectively. In vitro analyses of the activities of enzyme solutions indicated that all major cellulose and hemicellulose degrading activities were present; however, the pH optima (approximate pH = 4 to 5) were more acidic, and the temperature optimum (approximately 50 C) was greater than normal pH and temperature in the rumen. If fibrolytic activity in the rumen is a major mechanism of action of supplemental fibrolytic enzymes, it appears that considerable activity of these preparations was lost due to conditions in the rumen. In conclusion, feeding supplemental fibrolytic enzymes or malic acid with soluble sugars had no effect on milk production under the conditions used in this study.
Resumo:
The main aims of this study were to assess grazing impacts on bee communities in fragmented mediterranean shrubland (phrygana) and woodland habitats that also experience frequent wildfires, and to explain the mechanisms by which these impacts occur. Fieldwork was carried out in 1999 and 2000 on Mount Carmel, in northern Israel, a known hot-spot for bee diversity. Habitats with a range of post-burn ages and varying intensities of cattle grazing were surveyed by transect recording, grazing levels, and the diversity and abundance of both flowers and bees were measured. The species richness of both bees and flowers were highest at moderate to high grazing intensities, and path-analysis indicated that the effects of both grazing and fire on bee diversity were mediated mainly through changes in flower diversity, herb flowers being more important than shrubs. The abundance of bees increased with intensified grazing pressure even at the highest levels surveyed. Surprisingly though, changes in bee abundance at high grazing levels were not caused directly by changes in flower cover. The variation in bee abundance may have been due to higher numbers of solitary bees from the family Halictidae in grazed sites, where compacted ground (nesting resource) and composites (forage resource) were abundant. The effects of grazing on plants were clearest in the intermediate-aged sites, where cattle inhibited the growth of some of the dominant shrubs, creating or maintaining more open patches where light-demanding herbs could grow, thus allowing a diverse flora to develop. Overall, bee communities benefit from a relatively high level of grazing in phrygana. Although bee and flower diversity may decrease under very heavy grazing, the present levels of grazing on Mount Carmel appear to have only beneficial effects on the bee community.
Resumo:
Compensatory population dynamics among species stabilise aggregate community variables. Inter-specific competition is thought to be stabilising as it promotes asynchrony among populations. However, we know little about other inter-specific interactions, such as facilitation and granivory. Such interactions are also likely to influence population synchrony and community stability, especially in harsh environments where they are thought to have relatively strong effects in plant communities. We use a manipulative experiment to test the effects of granivores (harvester ants) and nurse plants (dwarf shrubs) on annual plant community dynamics in the Negev desert, Israel. We present evidence for weak and inconsistent effects of harvester ants on plant abundance and on population and community stability. By contrast, we show that annual communities under shrubs were more species rich, had higher plant density and were temporally less variable than communities in the inter-shrub matrix. Species richness and plant abundance were also more resistant to drought in the shrub under-storey compared with the inter-shrub matrix, although population dynamics in both patch types were synchronised. Hence, we show that inter-specific interactions other than competition affect community stability, and that hypothesised mechanisms linking compensatory dynamics and community stability may not operate to the same extent in arid plant communities.
Resumo:
P>1. Management of lowland mesotrophic grasslands in north-west Europe often makes use of inorganic fertilizers, high stocking densities and silage-based forage systems to maximize productivity. The impact of these practices has resulted in a simplification of the plant community combined with wide-scale declines in the species richness of grassland invertebrates. We aim to identify how field margin management can be used to promote invertebrate diversity across a suite of functionally diverse taxa (beetles, planthoppers, true bugs, butterflies, bumblebees and spiders). 2. Using an information theoretic approach we identify the impacts of management (cattle grazing, cutting and inorganic fertilizer) and plant community composition (forb species richness, grass species richness and sward architecture) on invertebrate species richness and body size. As many of these management practices are common to grassland systems throughout the world, understanding invertebrate responses to them is important for the maintenance of biodiversity. 3. Sward architecture was identified as the primary factor promoting increased species richness of both predatory and phytophagous trophic levels, as well as being positively correlated with mean body size. In all cases phytophagous invertebrate species richness was positively correlated with measures of plant species richness. 4. The direct effects of management practices appear to be comparatively weak, suggesting that their impacts are indirect and mediated though the continuous measures of plant community structure, such as sward architecture or plant species richness. 5. Synthesis and applications. By partitioning field margins from the remainder of the field, economically viable intensive grassland management can be combined with extensive management aimed at promoting native biodiversity. The absence of inorganic fertilizer, combined with a reduction in the intensity of both cutting and grazing regimes, promotes floral species richness and sward architectural complexity. By increasing sward architecture the total biomass of invertebrates also increased (by c. 60% across the range of sward architectural measures seen in this study), increasing food available for higher trophic levels, such as birds and mammals.
Resumo:
The major threat to Short-toed Eagles (Circaetus gallicus) is the reduction of suitable foraging habitats, but no quantitative studies have been conducted to understand this process. Here, the spatial distribution of foraging Short-toed Eagles was studied in relation to nine habitat types in Dadia-Lefkimi-Soufli National Park, Greece, during 1996-1998. Compared to the observed occurrence of foraging individuals over a particular habitat type with the expected utilization of that same habitat type, Short-toed Eagles concentrated their foraging efforts on three types of open habitat: intensive and non-intensive cultivation, and grasslands. Forested areas (pine forests, oak forests and mixed oak-pine forests) were largely avoided by foraging individuals. The density of prey items on the ground may not necessarily be a good indicator as to where an eagle individual will forage, as vegetation structure is also highly influential. The results highlight the importance of open habitat types which provide foraging opportunities for the Short-toed Eagle population. Management guidelines that maintain the region as a patchy network of open and wooded habitats are discussed in order to conserve a viable population of Short-toed Eagles, and possibly certain other raptor species that forage over open areas.
Resumo:
The period following the withdrawal of parental care has been highlighted as a key developmental period for juveniles. One reason for this is that juveniles cannot forage as competently as adults, potentially placing them at greater risk from environmentally-induced changes in food availability. However, no study has examined this topic. Using a long-term dataset on red foxes (Vulpes vulpes), we examined (i) dietary changes that occurred in the one-month period following the attainment of nutritional independence, (ii) diet composition in relation to climatic variation, and (iii) the effect of climatic variation on subsequent full-grown mass. Diet at nutritional independence contained increased quantities of easy-to-catch food items (earthworms and insects) when compared with pre-independence. Interannual variation in the volume of rainfall at nutritional independence was positively correlated to the proportion of earthworms in cub diet. Pre-independence cub mass and rainfall immediately following nutritional independence explained a significant proportion of variance in full-grown mass, with environmental variation affecting full-grown mass of the entire cohorts. Thus, weather-mediated availability of easy-to-catch food items at a key developmental stage has lifelong implications for the development of juvenile foxes by affecting full-grown mass, which in turn appears to be an important component of individual reproductive potential.
Resumo:
Termites are an important component of tropical soil communities and have a significant affect on the structure and nutrient content of soil. Digestion in termites is related to gut structure, gut physico-chemical conditions and gut symbiotic microbiota. Here we describe the use of 16S rRNA gene sequencing and Terminal-restriction Fragment Length Polymorphism (T-RFLP) analysis to examine methanogenic Archaea (MA) in the guts and food-soil of the soil-feeder Cubitermes fungifaber Sjostedt across a range of soil types. If they are strictly vertically inherited, then MA in guts should be the same in all individuals even if the soils differ across sites. In contrast, gut MA should reflect what is present in soil if populations are merely a reflection of what is ingested as the insects forage. We show clear differences between the euryarchaeal communities in termite guts and in food-soils from five different sites. Analysis of 16S rRNA gene clones indicated little overlap between the gut and soil communities. Gut clones were related to a termite-derived Methanomicrobiales cluster, to Methanobrevibacter and, surprisingly, to the haloalkaliphile Natronococcus. Soil clones clustered with Methanosarcina, Methanomicrococcus or Rice Cluster I. T-RFLP analysis indicated that the archaeal communities in the soil samples differed from site to site, whereas those in termite guts were similar between sites. There was some overlap between the gut and soil communities but these may represent transient populations in either guts or soil. Our data does not support the hypothesis that termite gut MA are derived from their food soil but also does not support a purely vertical transmission of gut microflora.