88 resultados para Food, Genetically Modified
Resumo:
Agriculture, particularly intensive crop production, makes a significant contribution to environmental pollution. A variety of canola (Brassica napus) has been genetically modified to enhance nitrogen use efficiency, effectively reducing the amount of fertilizer required for crop production. A partial life-cycle assessment adapted to crop production was used to assess the potential environmental impacts of growing genetically modified, nitrogen use-efficient (GMNUE) canola in North Dakota and Minnesota compared with a conventionally bred control variety. The analysis took into account the entire production system used to produce 1 tonne of canola. This comprised raw material extraction, processing and transportation, as well as all agricultural field operations. All emissions associated with the production of 1 tonne of canola were listed, aggregated and weighted in order to calculate the level of environmental impact. The findings show that there are a range of potential environmental benefits associated with growing GMNUE canola. These include reduced impacts on global warming, freshwater ecotoxicity, eutrophication and acidification. Given the large areas of canola grown in North America and, in particular, Canada, as well as the wide acceptance of genetically modified varieties in this area, there is the potential for GMNUE canola to reduce pollution from agriculture, with the largest reductions predicted to be in greenhouse gases and diffuse water pollution.
Resumo:
Biocontainment methods for genetically modified crops closest to commercial reality (chloroplast transformation, male sterility) would be compromised (in absolute terms) by seed-mediated gene flow leading to chloroplast capture. Even in these circumstances, however, it can be argued that biocontainment still represses transgene movement, with the efficacy depending on the relative frequency of seed-and pollen-mediated gene flow. In this study, we screened for crop-specific chloroplast markers from rapeseed (Brassica napus) amongst sympatric and allopatric populations of wild B. oleracea in natural cliff-top populations and B. rapa in riverside and weedy populations. We found only modest crop chloroplast presence in wild B. oleracea and in weedy B. rapa, but a surprisingly high incidence in sympatric (but not in allopatric) riverside B. rapa populations. Chloroplast inheritance models indicate that elevated crop chloroplast acquisition is best explained if crop cytoplasm confers selective advantage in riverside B. rapa populations. Our results therefore imply that chloroplast transformation may slow transgene recruitment in two settings, but actually accelerate transgene spread in a third. This finding suggests that the appropriateness of chloroplast transformation for biocontainment policy depends on both context and geographical location.
Resumo:
Data from 60 multiparous Holstein cows were used in a 12-wk continuous design feeding trial. Cows were allocated to 1 of 4 experimental treatments (T1 to T4). In T1 and T2, the total mixed ration (TMR) contained either corn silage from the genetically modified (GM) variety Chardon Liberty Link, which is tolerant to the herbicide glufosinate ammonium, or its near isogenic nonGM counterpart, whereas the TMR used in T3 and T4 contained corn silage from the commercially available nonGM varieties Fabius and Antares, respectively. The objectives of the study were to determine if the inserted gene produced a marked effect on chemical composition, nutritive value, feed intake, and milk production, and to determine if transgenic DNA and the protein expressed by the inserted gene could be detected in bovine milk. The nutritive value, fermentation characteristics, mineral content, and amino acid composition of all 4 silages were similar. There were no significant treatment effects on milk yield, milk composition, and yield of milk constituents, and the dry matter (DM) intake of the GM variety was not significantly different from the 2 commercial varieties. However, although the DM intake noted for the nonGM near-isogenic variety was similar to the commercial varieties, it was significantly lower when compared with the GM variety. Polymerase chain reaction analyses of milk samples collected at wk 1, 6, and 12 of the study showed that none of the 90 milk samples tested positive, above a detection limit of 2.5 ng of total genomic DNA/mL of milk, for either tDNA (event T25) or the single-copy endogenous Zea mays gene, alcohol dehydrogenase. Using ELISA assays, the protein expressed by the T25 gene was not detected in milk.
Resumo:
1.There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6.Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.
Resumo:
There is an on-going debate on the environmental effects of genetically modified crops to which this paper aims to contribute. First, data on environmental impacts of genetically modified (GM) and conventional crops are collected from peer-reviewed journals, and secondly an analysis is conducted in order to examine which crop type is less harmful for the environment. Published data on environmental impacts are measured using an array of indicators, and their analysis requires their normalisation and aggregation. Taking advantage of composite indicators literature, this paper builds composite indicators to measure the impact of GM and conventional crops in three dimensions: (1) non-target key species richness, (2) pesticide use, and (3) aggregated environmental impact. The comparison between the three composite indicators for both crop types allows us to establish not only a ranking to elucidate which crop is more convenient for the environment but the probability that one crop type outperforms the other from an environmental perspective. Results show that GM crops tend to cause lower environmental impacts than conventional crops for the analysed indicators.
Resumo:
This article critically reflects on the widely held view of a causal chain with trust in public authorities impacting technology acceptance via perceived risk. It first puts forward conceptual reason against this view, as the presence of risk is a precondition for trust playing a role in decision making. Second, results from consumer surveys in Italy and Germany are presented that support the associationist model as counter hypothesis. In that view, trust and risk judgments are driven by and thus simply indicators of higher order attitudes toward a certain technology which determine acceptance instead. The implications of these findings are discussed.
Resumo:
The purpose of the paper is to identify and describe differences in cognitive structures between consumer segments with differing levels of acceptance of genetically modified (GM) food. Among a sample of 60 mothers three segments are distinguished with respect to purchase intentions for GM yogurt: non-buyers, maybe-buyers and likely-buyers. A homogeneity test for the elicited laddering data suggests merging maybe- and likely-buyers, yielding two segments termed accepters and rejecters. Still, overlap between the segments’ cognitive structures is considerable, in particular with respect to a health focus in the evaluation of perceived consequences and ambivalence in technology assessment. Distinct differences are found in the assessment of benefits offered by GM food and the importance of values driving product evaluation and thus purchase decisions.
Resumo:
The agronomic and economic performance of genetically modified (GM) crops relative to their conventional counterparts has been largely investigated worldwide. As a result there is considerable information to conduct a meta-analysis to evaluate the agronomic and economic relative performance of GM crops vs. non GM crops by crop, GM trait, and country’s level of development. Such meta-analysis has been recently conducted showing that overall GM crops outperform non GM crops in both agronomic and economic terms (1). This paper focuses on the agronomic and economic performance of GM crops in developing and developed countries as well as the potential implications for global food security of adoption of GM crops by developing countries. The presumption that technology only benefits the developed world is not supported by the meta-analysis conducted. No evidence that GM technology benefits moredeveloped than developing countries was found. Indeed, the agronomic and economic performance of GM crops vs. conventional crops tends to be better for developing than for developed countries. Although it is manifested that the conventional agronomic practices in developing countries are different to those in developed countries, it is also apparent that GM crop adoption in developing countries may help to tackle the growing concerns over the scarcity of food globally.
Resumo:
We report results from an investigation into consumer preferences for locally produced foods. Using a choice experiment we estimate willingness to pay for foods of a designated origin together with certification for organic and free of genetically modified (GM)ingredients. Our results indicate that there is a preference for locally produced food that is GM free, organic, and produced in the traditional season.
Resumo:
This chapter describes the present status and future prospects for transgenic (genetically modified) crops. It concentrates on the most recent data obtained from patent databases and field trial applications, as well as the usual scientific literature. By these means, it is possible to obtain a useful perspective into future commercial products and international trends. The various research areas are subdivided on the basis of those associated with input (agronomic) traits and those concerned with output (e.g., food quality) characteristics. Among the former group are new methods of improving stress resistance, and among the latter are many examples of producing pharmaceutical compounds in plants.
Resumo:
This article examines the adoption of genetically modified herbicide tolerant (GMHT) crops in the European Union (EU) prior to its commercial release. A set of potential drivers including the implementation of coexistence measures by farmers, farmers’ own motivational factors (e.g. economic, environmental and technical factors) and perceived social pressure to accept or reject adoption may influence European Union farmers’ willingness to adopt GMHT oilseed rape and GMHT maize. The analysis includes economic and sociological factors. Results show that coexistence measures may hamper GMHT adoption in the EU.
Resumo:
As zinc (Zn) is both an essential trace element and potential toxicant, the effects of Zn fixation in soil are of practical significance. Soil samples from four field sites amended with ZnSO4 were used to investigate ageing of soluble Zn under field conditions over a 2-year period. Lability of Zn measured using 65Zn radioisotope dilution showed a significant decrease over time and hence evidence of Zn fixation in three of the four soils. However, 0.01 M CaCl2 extractions and toxicity measurements using a genetically modified lux-marked bacterial biosensor did not indicate a decrease in soluble/bioavailable Zn over time. This was attributed to the strong regulatory effect of abiotic properties such as pH on these latter measurements. These results also showed that Zn ageing occurred immediately after Zn spiking, emphasising the need to incubate freshly spiked soils before ecotoxicity assessments. Ageing effects were detected in Zn-amended field soils using 65Zn isotopic dilution as a measure of lability, but not with either CaCl2 extractions or a lux-marked bacterial biosensor.