53 resultados para Fishing Behavior


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equilibrium phase diagrams are calculated for a selection of two-component block copolymer architectures using self-consistent field theory (SCFT). The topology of the phase diagrams is relatively unaffected by differences in architecture, but the phase boundaries shift significantly in composition. The shifts are consistent with the decomposition of architectures into constituent units as proposed by Gido and coworkers, but there are significant quantitative deviations from this principle in the intermediate-segregation regime. Although the complex phase windows continue to be dominated by the gyroid (G) phase, the regions of the newly discovered Fddd (O^70) phase become appreciable for certain architectures and the perforated-lamellar (PL) phase becomes stable when the complex phase windows shift towards high compositional asymmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A working report for the Department of Agriculture and Fisheries, Scotland, Marine Laboratory Aberdeen

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper extends and clarifies results of Steinsaltz and Evans [Trans. Amer. Math. Soc. 359 (2007) 1285–1234], which found conditions for convergence of a killed one-dimensional diffusion conditioned on survival, to a quasistationary distribution whose density is given by the principal eigenfunction of the generator. Under the assumption that the limit of the killing at infinity differs from the principal eigenvalue we prove that convergence to quasistationarity occurs if and only if the principal eigenfunction is integrable. When the killing at ∞ is larger than the principal eigenvalue, then the eigenfunction is always integrable. When the killing at ∞ is smaller, the eigenfunction is integrable only when the unkilled process is recurrent; otherwise, the process conditioned on survival converges to 0 density on any bounded interval.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the time evolution of the wave function which is the solution of a stochastic Schrödinger equation describing the dynamics of a free quantum particle subject to spontaneous localizations in space. We prove global existence and uniqueness of solutions. We observe that there exist three time regimes: the collapse regime, the classical regime and the diffusive regime. Concerning the latter, we assert that the general solution converges almost surely to a diffusing Gaussian wave function having a finite spread both in position as well as in momentum. This paper corrects and completes earlier works on this issue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If X is a stable process of index α∈(0, 2) whose Lévy measure has density cx−α−1 on (0, ∞), and S1=sup0x)∽Aα−1x−α as x→∞ and P(S1≤x)∽Bα−1ρ−1xαρ as x↓0. [Here ρ=P(X1>0) and A and B are known constants.] It is also known that S1 has a continuous density, m say. The main point of this note is to show that m(x)∽Ax−(α+1) as x→∞ and m(x)∽Bxαρ−1 as x↓0. Similar results are obtained for related densities.