151 resultados para Factual Context


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major technical objectives of the RC-NSPES are to provide a framework for the concurrent operation of reactive and pro-active security functions to deliver efficient and optimised intrusion detection schemes as well as enhanced and highly correlated rule sets for more effective alerts management and root-cause analysis. The design and implementation of the RC-NSPES solution includes a number of innovative features in terms of real-time programmable embedded hardware (FPGA) deployment as well as in the integrated management station. These have been devised so as to deliver enhanced detection of attacks and contextualised alerts against threats that can arise from both the network layer and the application layer protocols. The resulting architecture represents an efficient and effective framework for the future deployment of network security systems.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large volume of visual content is inaccessible until effective and efficient indexing and retrieval of such data is achieved. In this paper, we introduce the DREAM system, which is a knowledge-assisted semantic-driven context-aware visual information retrieval system applied in the film post production domain. We mainly focus on the automatic labelling and topic map related aspects of the framework. The use of the context- related collateral knowledge, represented by a novel probabilistic based visual keyword co-occurrence matrix, had been proven effective via the experiments conducted during system evaluation. The automatically generated semantic labels were fed into the Topic Map Engine which can automatically construct ontological networks using Topic Maps technology, which dramatically enhances the indexing and retrieval performance of the system towards an even higher semantic level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Driven by new network and middleware technologies such as mobile broadband, near-field communication, and context awareness the so-called ambient lifestyle will foster innovative use cases in building automation, healthcare and agriculture. In the EU project Hydra1 highlevel security, trust and privacy concerns such as loss of control, profiling and surveillance are considered at the outset. At the end of this project the Hydra middleware development platform will have been designed so as to enable developers to realise secure ambient scenarios especially in the user domains of building automation, healthcare, and agriculture. This paper gives a short introduction to the Hydra project, its user domains and its approach to ensure security by design. Based on the results of a focus group analysis of the building automation domain typical threats are evaluated and their risks are assessed. Then, specific security requirements with respect to security, privacy, and trust are derived in order to incorporate them into the Hydra Security Meta Model. How concepts such as context security, semantic security, and virtualisation support the overall Hydra approach will be introduced and illustrated on the basis of a technical building automation scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.