56 resultados para FOOD SAFETY
Resumo:
Irrigation is used frequently in potato cultivation to maximize yield, but water availability may also affect the composition of the crop, with implications for processing properties and food safety. Five varieties of potatoes, including drought-tolerant and -sensitive types, which had been grown with and without irrigation, were analyzed to show the effect of water supply on concentrations of free asparagine, other free amino acids, and sugars and on the acrylamide-forming potential of the tubers. Two varieties were also analyzed under more severe drought stress in a glasshouse. Water availability had profound effects on tuber free amino acid and sugar concentrations, and it was concluded that potato farmers should irrigate only if necessary to maintain the health and yield of the crop, because irrigation may increase the acrylamide-forming potential of potatoes. Even mild drought stress caused significant changes in composition, but these differed from those caused by more extreme drought stress. Free proline concentration, for example, increased in the field-grown potatoes of one variety from 7.02 mmol/kg with irrigation to 104.58 mmol/kg without irrigation, whereas free asparagine concentration was not affected significantly in the field but almost doubled from 132.03 to 242.26 mmol/kg in response to more severe drought stress in the glasshouse. Furthermore, the different genotypes were affected in dissimilar fashion by the same treatment, indicating that there is no single, unifying potato tuber drought stress response.
Resumo:
Background Flavonoids are a group of phenolic secondary plant metabolites that are ubiquitous in plant-based diets. Data from anthropological, observational and intervention studies have shown that many flavonoids are bioactive. For this reason, there is an increasing interest in investigating the potential health effects of these compounds. The translation of these findings into the context of the health of the general public requires detailed information on habitual dietary intake. However, only limited data are currently available for European populations. Objective The objective of this study is to determine the habitual intake and main sources of anthocyanidins, flavanols, flavanones, flavones, flavonols, proanthocyanidins, theaflavins and thearubigins in the European Union. Design We use food consumption data from the European Food Safety Authority (EFSA) and the FLAVIOLA Food Composition Database to estimate intake of flavonoids. Results Mean (±SEM) intake of total flavonoids in Europe was 428±49 mg/d, of which 136±14 mg/d were monomeric compounds. Gallated flavan-3-ols (53±12 mg/d) were the main contributor. The lowest flavonoid intake was observed in Mediterranean countries (monomeric compounds: 95±11 mg/d). The distribution of intake was skewed in many countries, especially in Germany (monomeric flavonoids; mean intake: 181 mg/d; median intake: 3 mg/d). Conclusions The habitual intake of flavonoids in Europe is below the amounts found to have a significant health effect.
Resumo:
Tremendous progress in plant proteomics driven by mass spectrometry (MS) techniques has been made since 2000 when few proteomics reports were published and plant proteomics was in its infancy. These achievements include the refinement of existing techniques and the search for new techniques to address food security, safety, and health issues. It is projected that in 2050, the world’s population will reach 9–12 billion people demanding a food production increase of 34–70% (FAO, 2009) from today’s food production. Provision of food in a sustainable and environmentally committed manner for such a demand without threatening natural resources, requires that agricultural production increases significantly and that postharvest handling and food manufacturing systems become more efficient requiring lower energy expenditure, a decrease in postharvest losses, less waste generation and food with longer shelf life. There is also a need to look for alternative protein sources to animal based (i.e., plant based) to be able to fulfill the increase in protein demands by 2050. Thus, plant biology has a critical role to play as a science capable of addressing such challenges. In this review, we discuss proteomics especially MS, as a platform, being utilized in plant biology research for the past 10 years having the potential to expedite the process of understanding plant biology for human benefits. The increasing application of proteomics technologies in food security, analysis, and safety is emphasized in this review. But, we are aware that no unique approach/technology is capable to address the global food issues. Proteomics-generated information/resources must be integrated and correlated with other omics-based approaches, information, and conventional programs to ensure sufficient food and resources for human development now and in the future.
Resumo:
Public concern over impacts of chemicals in plant and animal production on health and the environment has led to increased demand for organic produce, which is usually promoted and often perceived as containing fewer contaminants, more nutrients, and being positive for the environment. These benefits are difficult to quantify, and potential environmental impacts on such benefits have not been widely studied. This book addresses these key points, examining factors such as the role of certain nutrients in prevention and promotion of chronic disease, potential health benefits of bioactive compounds in plants, the prevalence of food-borne pesticides and pathogens and how both local and global environmental factors may affect any differences between organic and conventionally produced food. This book is an essential resource for researchers and students in human health and nutrition, environmental science, agriculture and organic farming. Main Contents 1. Organic farming and food systems: definitions and key characteristics. 2. The health benefits of n-3 fatty acids and their concentrations in organic and conventional animal-derived foods. 3. Environmental impacts on n-3 content of foods from ruminant animals. 4. Health benefits and selenium content of organic vs conventional foods. 5. Environmental impacts concerning the selenium content of foods. 6. Contaminants in organic and conventional food: the missing link between contaminant levels and health effects. 7. Mycotoxins in organic and conventional foods and effects of the environment. 8. Human pathogens in organic and conventional foods and effects of the environment. 9. What does consumer science tell us about organic foods? 10. The beneficial effects of dietary flavonoids: sources, bioavailability and biological functions. 11. Environmental regulation of flavonoid biosynthesis. 12. Nitrates in the human diet. 13. Impacts of environment and management on nitrate in vegetables and water. 14. Effects of the environment on the nutritional quality and safety of organically produced foods: Round-up and summary.
Resumo:
An increasing set of evidence has been reported on how consumers could potentially react to the introduction of genetically modified food. Studies typically contain some empirical evidence and some theoretical explanations of the data, however, to date limited effort has been posed on systematically reviewing the existing evidence and its implications for policy. This paper contributes to the literature by bringing together the published evidence on the behavioural frameworks and evidence on the process leading to the public acceptance of genetically modified (GM) food and organisms (GMOs). In doing so, we employ a set of clearly defined search tools and a limited number of comprehensive key words. The study attempts to gather an understanding of the published findings on the determinants of the valuation of GM food - both in terms of willingness to accept and the willing-to-pay a premium for non-GM food, trust with information sources on the safety and public health and ultimate attitudes underpinning such evidence. Furthermore, in the light of such evidence, we formulate some policy strategies to deal with public uncertainly regarding to GMOs and, especially GM food. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Reports that heat processing of foods induces the formation of acrylamide heightened interest in the chemistry, biochemistry, and safety of this compound. Acrylamide-induced neurotoxicity, reproductive toxicity, genotoxicity, and carcinogenicity are potential human health risks based on animal studies. Because exposure of humans to acrylamide can come from both external sources and the diet, there exists a need to develop a better understanding of its formation and distribution in food and its role in human health. To contribute to this effort, experts from eight countries have presented data on the chemistry, analysis, metabolism, pharmacology, and toxicology of acrylamide. Specifically covered are the following aspects: exposure from the environment and the diet; biomarkers of exposure; risk assessment; epidemiology; mechanism of formation in food; biological alkylation of amino acids, peptides, proteins, and DNA by acrylamide and its epoxide metabolite glycidamide; neurotoxicity, reproductive toxicity, and carcinogenicity; protection against adverse effects; and possible approaches to reducing levels in food. Cross-fertilization of ideas among several disciplines in which an interest in acrylamide has developed, including food science, pharmacology, toxicology, and medicine, will provide a better understanding of the chemistry and biology of acrylamide in food, and can lead to the development of food processes to decrease the acrylamide content of the diet.
Resumo:
Oligofructose (OF), comprised of fructose oligomers with a terminal glucose unit, is a family Of oligosaccharides derived from the hydrolysis of inulin. Consumption of OF in animals and humans increases colonic bifidobacteria levels. The present study evaluates the safety of OF in both a 13 week rat feeding Study and Using in Vitro mutagenicity tests. Fecal bifidobacteria levels were also determined by in situ hybridization to assess a biological function of OF. Rats received either a control diet OF diets containing one of four doses of OF. Total, HDL, and LDL-cholesterol levels were significantly lower at several time points during the study in groups receiving OF compared to controls with the largest effects Occurring in the high dose male animals. Weight gain in the male high dose group was significantly lower at early time points compared to controls but]lot Significantly different at the end of study. As expected, cecal weights increased in a dose-related manner and fecal bifidobacteria levels also demonstrated a dose-related increase. There were no consistent differences in gross pathology or histopathology related to dietary OF. OF did not induce a positive response in the Ames test or chromosomal aberration test with CHO cells. These results demonstrate no adverse effects of OF. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Let 0 denote the level of quality inherent in a food product that is delivered to some terminal market. In this paper, I characterize allocations over 0 and provide an economic rationale for regulating safety and quality standards in the food system. Zusman and Bockstael investigate the theoretical foundations for imposing standards and stress the importance of providing a tractable conceptual foundation. Despite a wealth of contributions that are mainly empirical (for reviews of these works see, respectively, Caswell and Antle), there have been relatively few attempts to model formally the linkages between farm and food markets when food quality and consumer safety are at issue. Here, I attempt to provide such a framework, building on key contributions in the theoretical literature and linking them in a simple model of quality determination in a vertically related marketing channel. The food-marketing model is due to Gardner. Spence provides a foundation for Pareto-improving intervention in a deterministic model of quality provision, and Leland, building on the classic paper by Akerlof, investigates licensing and minimum standards when the information structure is incomplete. Linking these ideas in a satisfactory model of the food markets is the main objective of the paper.
Resumo:
This article models the interactions between safety and quality control and stage of distribution in the food marketing complex
Resumo:
In the ten years since the first edition of this book appeared there have been significant developments in food process engineering, notably in biotechnology and membrane application. Advances have been made in the use of sensors for process control, and the growth of information technology and on-line computer applications continues apace. In addition, plant investment decisions are increasingly determined by quality assurance considerations and have to incorporate a greater emphasis on health and safety issues. The content of this edition has been rearranged to include descriptions of recent developments and to reflect the influence of new technology on the control and operations of automated plant. Original examples have been retained where relevant and these, together with many new illustrations, provide a comprehensive guide to good practice.
Resumo:
Agriculture and food security are key sectors for intervention under climate change. Agricultural production is highly vulnerable even to 2C (low-end) predictions for global mean temperatures in 2100, with major implications for rural poverty and for both rural and urban food security. Agriculture also presents untapped opportunities for mitigation, given the large land area under crops and rangeland, and the additional mitigation potential of aquaculture. This paper presents a summary of current knowledge on options to support farmers, particularly smallholder farmers, in achieving food security through agriculture under climate change. Actions towards adaptation fall into two broad overlapping areas: (1) accelerated adaptation to progressive climate change over decadal time scales, for example integrated packages of technology, agronomy and policy options for farmers and food systems, and (2) better management of agricultural risks associated with increasing climate variability and extreme events, for example improved climate information services and safety nets. Maximization of agriculture’s mitigation potential will require investments in technological innovation and agricultural intensification linked to increased efficiency of inputs, and creation of incentives and monitoring systems that are inclusive of smallholder farmers. Food systems faced with climate change need urgent, broad-based action in spite of uncertainties.