59 resultados para Experimental evidence
Molecular evidence from ascidians for the evolutionary origin of vertebrate cranial sensory placodes
Resumo:
Cranial sensory placodes are specialised areas of the head ectoderm of vertebrate embryos that contribute to the formation of the cranial sense organs and associated ganglia. Placodes are often considered a vertebrate innovation, and their evolution has been hypothesised as one key adaptation underlying the evolution of active predation by primitive vertebrates. Here, we review recent molecular evidence pertinent to understanding the evolutionary origin of placodes. The development of vertebrate placodes is regulated by numerous genes, including members of the Pax, Six, Eya, Fox, Phox, Neurogenin and Pou gene families. In the sea squirt Ciona intestinalis (a basal chordate and close relative of the vertebrates), orthologues of these genes are deployed in the development of the oral and atrial siphons, structures used for filter feeding by the sessile adult. Our interpretation of these findings is that vertebrate placodes and sea squirt siphon primordia have evolved from the same patches of specialised ectoderm present in the common ancestor of the chordates.
Resumo:
Background and purpose: The aim of this report is to study mechanisms of G protein activation by agonists. Experimental approach: The association and dissociation of guanosine 5'-O-(3-[S-35] thio) triphosphate ([S-35] GTP gamma S) binding at G proteins in membranes of CHO cells stably transfected with the human dopamine D-2short receptor was studied in the presence of a range of agonists. Key results: Binding of [S-35] GTPgS was dissociable in the absence of agonist and dissociation was accelerated both in rate and extent by dopamine, an effect which was blocked by the dopamine D-2 receptor antagonist raclopride and by suramin, which inhibits receptor/G protein interaction. A range of agonists of varying efficacy increased the rate of dissociation of [S-35] GTPgS binding, with the more efficacious agonists resulting in faster dissociation. Agonists were able to dissociate about 70% of the pre-bound [S-35] GTPgS, leaving a component which may not be accessible to the agonist-bound receptor. The dissociable component of the [S-35] GTPgS binding was reduced with longer association times and increased [S-35] GTPgS concentrations. Conclusions and implications: These data are consistent with [S-35] GTPgS binding being initially to receptor-linked G proteins and then to G proteins which have separated from the agonist bound receptor. Under the conditions used typically for [S-35] GTPgS binding assays, therefore, much of the agonist-receptor complex remains in proximity to G proteins after they have been activated by agonist.
Resumo:
Cognitive control mechanisms—such as inhibition—decrease the likelihood that goal-directed activity is ceded to irrelevant events. Here, we use the action of auditory distraction to show how retrieval from episodic long-term memory is affected by competitor inhibition. Typically, a sequence of to-be-ignored spoken distracters drawn from the same semantic category as a list of visually-presented to-be-recalled items impairs free recall performance. In line with competitor inhibition theory (Anderson, 2003), free recall was worse for items on a probe trial if they were a repeat of distracter items presented during the previous, prime, trial (Experiment 1). This effect was only produced when the distracters were dominant members of the same category as the to-be-recalled items on the prime. For prime trials in which distracters were low-dominant members of the to-be-remembered item category or were unrelated to that category—and hence not strong competitors for retrieval—positive priming was found (Experiments 2 & 3). These results are discussed in terms of inhibitory approaches to negative priming and memory retrieval.
Resumo:
A common procedure for studying the effects on cognition of repetitive transcranial magnetic stimulation (rTMS) is to deliver rTMS concurrent with task performance, and to compare task performance on these trials versus on trials without rTMS. Recent evidence that TMS can have effects on neural activity that persist longer than the experimental session itself, however, raise questions about the assumption of the transient nature of rTMS that underlies many concurrent (or "online") rTMS designs. To our knowledge, there have been no studies in the cognitive domain examining whether the application of brief trains of rTMS during specific epochs of a complex task may have effects that spill over into subsequent task epochs, and perhaps into subsequent trials. We looked for possible immediate spill-over and longer-term cumulative effects of rTMS in data from two studies of visual short-term delayed recognition. In 54 subjects, 10-Hz rTMS trains were applied to five different brain regions during the 3-s delay period of a spatial task, and in a second group of 15 subjects, electroencephalography (EEG) was recorded while 10-Hz rTMS was applied to two brain areas during the 3-s delay period of both spatial and object tasks. No evidence for immediate effects was found in the comparison of the memory probe-evoked response on trials that were vs. were not preceded by delay-period rTMS. No evidence for cumulative effects was found in analyses of behavioral performance, and of EEG signal, as a function of task block. The implications of these findings, and their relation to the broader literature on acute vs. long-lasting effects of rTMS, are considered.
Resumo:
The sensitivity to the horizontal resolution of the climate, anthropogenic climate change, and seasonal predictive skill of the ECMWF model has been studied as part of Project Athena—an international collaboration formed to test the hypothesis that substantial progress in simulating and predicting climate can be achieved if mesoscale and subsynoptic atmospheric phenomena are more realistically represented in climate models. In this study the experiments carried out with the ECMWF model (atmosphere only) are described in detail. Here, the focus is on the tropics and the Northern Hemisphere extratropics during boreal winter. The resolutions considered in Project Athena for the ECMWF model are T159 (126 km), T511 (39 km), T1279 (16 km), and T2047 (10 km). It was found that increasing horizontal resolution improves the tropical precipitation, the tropical atmospheric circulation, the frequency of occurrence of Euro-Atlantic blocking, and the representation of extratropical cyclones in large parts of the Northern Hemisphere extratropics. All of these improvements come from the increase in resolution from T159 to T511 with relatively small changes for further resolution increases to T1279 and T2047, although it should be noted that results from this very highest resolution are from a previously untested model version. Problems in simulating the Madden–Julian oscillation remain unchanged for all resolutions tested. There is some evidence that increasing horizontal resolution to T1279 leads to moderate increases in seasonal forecast skill during boreal winter in the tropics and Northern Hemisphere extratropics. Sensitivity experiments are discussed, which helps to foster a better understanding of some of the resolution dependence found for the ECMWF model in Project Athena
Resumo:
Clinical evidence suggests that a persistent search for solutions for chronic pain may bring along costs at the cognitive, affective, and behavioral level. Specifically, attempts to control pain may fuel hypervigilance and prioritize attention towards pain-related information. This hypothesis was investigated in an experiment with 41 healthy volunteers. Prioritization of attention towards a signal for pain was measured using an adaptation of a visual search paradigm in which participants had to search for a target presented in a varying number of colored circles. One of these colors (Conditioned Stimulus) became a signal for pain (Unconditioned Stimulus: electrocutaneous stimulus at tolerance level) using a classical conditioning procedure. Intermixed with the visual search task, participants also performed another task. In the pain-control group, participants were informed that correct and fast responses on trials of this second task would result in an avoidance of the Unconditioned Stimulus. In the comparison group, performance on the second task was not instrumental in controlling pain. Results showed that in the pain-control group, attention was more prioritized towards the Conditioned Stimulus than in the comparison group. The theoretical and clinical implications of these results are discussed.
Resumo:
Peroxisome proliferator-activated receptor-gamma2 (PPARG2) is a nuclear hormone receptor of ligand-dependent transcription factor involved in adipogenesis and a molecular target of the insulin sensitizers thiazolidinediones. We addressed the question of whether the 3 variants (-1279G/A, Pro12Ala, and His478His) in the PPARG2 gene are associated with type 2 diabetes mellitus and its related traits in a South Indian population. The study subjects (1000 type 2 diabetes mellitus and 1000 normal-glucose-tolerant subjects) were chosen randomly from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in southern India. The variants were screened by single-stranded conformational variant, direct sequencing, and restriction fragment length polymorphism. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. The -1279G/A, Pro12Ala, and His478His variants of the PPARG2 gene were not associated with type 2 diabetes mellitus. However, the 2-loci analyses showed that, in the presence of Pro/Pro genotype of the Pro12Ala variant, the -1279G/A promoter variant showed increased susceptibility to type 2 diabetes mellitus (odds ratio, 2.092; 95% confidence interval, 1.22-3.59; P = .008), whereas in the presence of 12Ala allele, the -1279G/A showed a protective effect against type 2 diabetes mellitus (odds ratio, 0.270; 95% confidence interval, 0.15-0.49; P < .0001). The 3-loci haplotype analysis showed that the A-Ala-T (-1279G/A-Pro12Ala-His478His) haplotype was associated with a reduced risk of type 2 diabetes mellitus (P < .0001). Although our data indicate that the PPARG2 gene variants, independently, have no association with type 2 diabetes mellitus, the 2-loci genotype analysis involving -1279G/A and Pro12Ala variants and the 3-loci haplotype analysis have shown a significant association with type 2 diabetes mellitus in this South Indian population.
Resumo:
The hypothesis that pronouns can be resolved via either the syntax or the discourse representation has played an important role in linguistic accounts of pronoun interpretation (e.g. Grodzinsky & Reinhart, 1993). We report the results of an eye-movement monitoring study investigating the relative timing of syntactically-mediated variable binding and discourse-based coreference assignment during pronoun resolution. We examined whether ambiguous pronouns are preferentially resolved via either the variable binding or coreference route, and in particular tested the hypothesis that variable binding should always be computed before coreference assignment. Participants’ eye movements were monitored while they read sentences containing a pronoun and two potential antecedents, a c-commanding quantified noun phrase and a non c-commanding proper name. Gender congruence between the pronoun and either of the two potential antecedents was manipulated as an experimental diagnostic for dependency formation. In two experiments, we found that participants’ reading times were reliably longer when the linearly closest antecedent mismatched in gender with the pronoun. These findings fail to support the hypothesis that variable binding is computed before coreference assignment, and instead suggest that antecedent recency plays an important role in affecting the extent to which a variable binding antecedent is considered. We discuss these results in relation to models of memory retrieval during sentence comprehension, and interpret the antecedent recency preference as an example of forgetting over time.
Resumo:
It has been suggested that the evidence used to support a decision to move our eyes and the confidence we have in that decision are derived from a common source. Alternatively, confidence may be based on further post-decisional processes. In three experiments we examined this. In Experiment 1, participants chose between two targets on the basis of varying levels of evidence (i.e., the direction of motion coherence in a Random-Dot-Kinematogram). They indicated this choice by making a saccade to one of two targets and then indicated their confidence. Saccade trajectory deviation was taken as a measure of the inhibition of the non-selected target. We found that as evidence increased so did confidence and deviations of saccade trajectory away from the non-selected target. However, a correlational analysis suggested they were not related. In Experiment 2 an option to opt-out of the choice was offered on some trials if choice proved too difficult. In this way we isolated trials on which confidence in target selection was high (i.e., when the option to opt-out was available but not taken). Again saccade trajectory deviations were found not to differ in relation to confidence. In Experiment 3 we directly manipulated confidence, such that participants had high or low task confidence. They showed no differences in saccade trajectory deviations. These results support post-decisional accounts of confidence: evidence supporting the decision to move the eyes is reflected in saccade control, but the confidence that we have in that choice is subject to further post-decisional processes.
Resumo:
Literature reviews suggest flavonoids, a sub-class of polyphenols, are beneficial for cognition. This is the first review examining the effect of consumption of all polyphenol groups on cognitive function. Inclusion criteria were polyphenol vs. control interventions and epidemiological studies with an objective measure of cognitive function. Participants were healthy or mildly cognitively impaired adults. Studies were excluded if clinical assessment or diagnosis of Alzheimer’s disease, dementia, or cognitive impairment was the sole measure of cognitive function, or if the polyphenol was present with potentially confounding compounds such as caffeine (e.g. tea studies) or Ginkgo Biloba. 28 studies were identified; 4 berry juice studies, 4 cocoa studies, 13 isoflavone supplement studies, 3 other supplement studies, and 4 epidemiological surveys. Overall, 16 studies reported cognitive benefits following polyphenol consumption. Evidence suggests that consuming additional polyphenols in the diet can lead to cognitive benefits, however, the observed effects were small. Declarative memory and particularly spatial memory appear most sensitive to polyphenol consumption and effects may differ depending on polyphenol source. Polyphenol berry fruit juice consumption was most beneficial for immediate verbal memory, whereas isoflavone based interventions were associated with significant improvements for delayed spatial memory and executive function. Comparison between studies was hampered by methodological inconsistencies. Hence, there was no clear evidence for an association between cognitive outcomes and polyphenol dose response, duration of intervention, or population studied. In conclusion, however, the findings do imply that polyphenol consumption has potential to benefit cognition both acutely and chronically.
Resumo:
Two experiments examined the extent to which erroneous recall blocks veridical recall using, as a vehicle for study, the disruptive impact of distractors that are semantically similar to a list of words presented for free recall. Instructing participants to avoid erroneous recall of to-be-ignored spoken distractors attenuated their recall but this did not influence the disruptive effect of those distractors on veridical recall (Experiment 1). Using an externalised output-editing procedure—whereby participants recalled all items that came to mind and identified those that were erroneous—the usual between-sequence semantic similarity effect on erroneous and veridical recall was replicated but the relationship between the rate of erroneous and veridical recall was weak (Experiment 2). The results suggest that forgetting is not due to veridical recall being blocked by similar events.
Resumo:
Theory predicts the emergence of generalists in variable environments and antagonistic pleiotropy to favour specialists in constant environments, but empirical data seldom support such generalist–specialist trade-offs. We selected for generalists and specialists in the dung fly Sepsis punctum (Diptera: Sepsidae) under conditions that we predicted would reveal antagonistic pleiotropy and multivariate trade-offs underlying thermal reaction norms for juvenile development. We performed replicated laboratory evolution using four treatments: adaptation at a hot (31 °C) or a cold (15 °C) temperature, or under regimes fluctuating between these temperatures, either within or between generations. After 20 generations, we assessed parental effects and genetic responses of thermal reaction norms for three correlated life-history traits: size at maturity, juvenile growth rate and juvenile survival. We find evidence for antagonistic pleiotropy for performance at hot and cold temperatures, and a temperature-mediated trade-off between juvenile survival and size at maturity, suggesting that trade-offs associated with environmental tolerance can arise via intensified evolutionary compromises between genetically correlated traits. However, despite this antagonistic pleiotropy, we found no support for the evolution of increased thermal tolerance breadth at the expense of reduced maximal performance, suggesting low genetic variance in the generalist–specialist dimension.
Resumo:
The study of decaying organisms and death assemblages is referred to as forensic taphonomy, or more simply the study of graves. This field is dominated by the fields of entomology, anthropology and archaeology. Forensic taphonomy also includes the study of the ecology and chemistry of the burial environment. Studies in forensic taphonomy often require the use of analogues for human cadavers or their component parts. These might include animal cadavers or skeletal muscle tissue. However, sufficient supplies of cadavers or analogues may require periodic freezing of test material prior to experimental inhumation in the soil. This study was carried out to ascertain the effect of freezing on skeletal muscle tissue prior to inhumation and decomposition in a soil environment under controlled laboratory conditions. Changes in soil chemistry were also measured. In order to test the impact of freezing, skeletal muscle tissue (Sus scrofa) was frozen (−20 °C) or refrigerated (4 °C). Portions of skeletal muscle tissue (∼1.5 g) were interred in microcosms (72 mm diameter × 120 mm height) containing sieved (2 mm) soil (sand) adjusted to 50% water holding capacity. The experiment had three treatments: control with no skeletal muscle tissue, microcosms containing frozen skeletal muscle tissue and those containing refrigerated tissue. The microcosms were destructively harvested at sequential periods of 2, 4, 6, 8, 12, 16, 23, 30 and 37 days after interment of skeletal muscle tissue. These harvests were replicated 6 times for each treatment. Microbial activity (carbon dioxide respiration) was monitored throughout the experiment. At harvest the skeletal muscle tissue was removed and the detritosphere soil was sampled for chemical analysis. Freezing was found to have no significant impact on decomposition or soil chemistry compared to unfrozen samples in the current study using skeletal muscle tissue. However, the interment of skeletal muscle tissue had a significant impact on the microbial activity (carbon dioxide respiration) and chemistry of the surrounding soil including: pH, electroconductivity, ammonium, nitrate, phosphate and potassium. This is the first laboratory controlled study to measure changes in inorganic chemistry in soil associated with the decomposition of skeletal muscle tissue in combination with microbial activity.
Resumo:
The eye movements of 24 children and 24 adults were monitored to compare how they read sentences containing plausible, implausible, and anomalous thematic relations. In the implausible condition the incongruity occurred due to the incompatibility of two objects involved in the event denoted by the main verb. In the anomalous condition the direct object of the verb was not a possible verb argument. Adults exhibited immediate disruption with the anomalous sentences as compared to the implausible sentences as indexed by longer gaze durations on the target word. Children exhibited the same pattern of effects as adults as far as the anomalous sentences were concerned, but exhibited delayed effects of implausibility. These data indicate that while children and adults are alike in their basic thematic assignment processes during reading, children may be delayed in the efficiency with which they are able to integrate pragmatic and real world knowledge into their discourse representation.