63 resultados para Event-related Fmri
Resumo:
Background: Some studies have proven that a conventional visual brain computer interface (BCI) based on overt attention cannot be used effectively when eye movement control is not possible. To solve this problem, a novel visual-based BCI system based on covert attention and feature attention has been proposed and was called the gaze-independent BCI. Color and shape difference between stimuli and backgrounds have generally been used in examples of gaze-independent BCIs. Recently, a new paradigm based on facial expression changes has been presented, and obtained high performance. However, some facial expressions were so similar that users couldn't tell them apart, especially when they were presented at the same position in a rapid serial visual presentation (RSVP) paradigm. Consequently, the performance of the BCI is reduced. New Method: In this paper, we combined facial expressions and colors to optimize the stimuli presentation in the gaze-independent BCI. This optimized paradigm was called the colored dummy face pattern. It is suggested that different colors and facial expressions could help users to locate the target and evoke larger event-related potentials (ERPs). In order to evaluate the performance of this new paradigm, two other paradigms were presented, called the gray dummy face pattern and the colored ball pattern. Comparison with Existing Method(s): The key point that determined the value of the colored dummy faces stimuli in BCI systems was whether the dummy face stimuli could obtain higher performance than gray faces or colored balls stimuli. Ten healthy participants (seven male, aged 21–26 years, mean 24.5 ± 1.25) participated in our experiment. Online and offline results of four different paradigms were obtained and comparatively analyzed. Results: The results showed that the colored dummy face pattern could evoke higher P300 and N400 ERP amplitudes, compared with the gray dummy face pattern and the colored ball pattern. Online results showed that the colored dummy face pattern had a significant advantage in terms of classification accuracy (p < 0.05) and information transfer rate (p < 0.05) compared to the other two patterns. Conclusions: The stimuli used in the colored dummy face paradigm combined color and facial expressions. This had a significant advantage in terms of the evoked P300 and N400 amplitudes and resulted in high classification accuracies and information transfer rates. It was compared with colored ball and gray dummy face stimuli.
Resumo:
The problem of modeling solar energetic particle (SEP) events is important to both space weather research and forecasting, and yet it has seen relatively little progress. Most important SEP events are associated with coronal mass ejections (CMEs) that drive coronal and interplanetary shocks. These shocks can continuously produce accelerated particles from the ambient medium to well beyond 1 AU. This paper describes an effort to model real SEP events using a Center for Integrated Space weather Modeling (CISM) MHD solar wind simulation including a cone model of CMEs to initiate the related shocks. In addition to providing observation-inspired shock geometry and characteristics, this MHD simulation describes the time-dependent observer field line connections to the shock source. As a first approximation, we assume a shock jump-parameterized source strength and spectrum, and that scatter-free transport occurs outside of the shock source, thus emphasizing the role the shock evolution plays in determining the modeled SEP event profile. Three halo CME events on May 12, 1997, November 4, 1997 and December 13, 2006 are used to test the modeling approach. While challenges arise in the identification and characterization of the shocks in the MHD model results, this approach illustrates the importance to SEP event modeling of globally simulating the underlying heliospheric event. The results also suggest the potential utility of such a model for forcasting and for interpretation of separated multipoint measurements such as those expected from the STEREO mission.
Resumo:
The current study extends previous investigation of schizotypy as a vulnerability factor for trauma-related intrusions through the use of a clinical sample. Fifty people seeking psychological interventions after experiencing a distressing or traumatic event completed measures of positive schizotypy, posttraumatic stress disorder symptomatology, peritraumatic dissociation, and mood. Individuals scoring high in positive schizotypy were vulnerable to experiencing more frequent trauma-related intrusions along with wider posttraumatic stress disorder symptomatology, including hypervigilance, avoidance, and low mood. Results are discussed within a theoretical context, suggesting that certain information processing styles associated with high schizotype individuals may account for a vulnerability to trauma-related intrusions.
Resumo:
Background The information processing capacity of the human mind is limited, as is evidenced by the attentional blink (AB) - a deficit in identifying the second of two temporally-close targets (T1 and T2) embedded in a rapid stream of distracters. Theories of the AB generally agree that it results from competition between stimuli for conscious representation. However, they disagree in the specific mechanisms, in particular about how attentional processing of T1 determines the AB to T2. Methodology/Principal Findings The present study used the high spatial resolution of functional magnetic resonance imaging (fMRI) to examine the neural mechanisms underlying the AB. Our research approach was to design T1 and T2 stimuli that activate distinguishable brain areas involved in visual categorization and representation. ROI and functional connectivity analyses were then used to examine how attentional processing of T1, as indexed by activity in the T1 representation area, affected T2 processing. Our main finding was that attentional processing of T1 at the level of the visual cortex predicted T2 detection rates Those individuals who activated the T1 encoding area more strongly in blink versus no-blink trials generally detected T2 on a lower percentage of trials. The coupling of activity between T1 and T2 representation areas did not vary as a function of conscious T2 perception. Conclusions/Significance These data are consistent with the notion that the AB is related to attentional demands of T1 for selection, and indicate that these demands are reflected at the level of visual cortex. They also highlight the importance of individual differences in attentional settings in explaining AB task performance.
Resumo:
This article discusses approaches to the interpretation and analysis an event that is poised between reality and performance. It focuses upon a real event witnessed by the author while driving out of Los Angeles, USA. A body hanging on a rope from a bridge some 25/30 feet above the freeway held up the traffic. The status of the body was unclear. Was it the corpse of a dead human being or a stuffed dummy, a simulation of a death? Was it is tragic accident or suicide or was it a stunt, a protest or a performance? Whether a real body or not, it was an event: it drew an audience, it took place in a defined public space bound by time and it disrupted everyday normality and the familiar. The article debates how approaches to performance can engage with a shocking event, such as the Hanging Man, and the frameworks of interpretation that can be brought to bear on it. The analysis takes account of the function of memory in reconstructing the event, and the paradigms of cultural knowledge that offered themselves as parallels, comparators or distinctions against which the experience could be measured, such as the incidents of self-immolation related to demonstrations against the Vietnam War, the protest by the Irish Hunger Strikers and the visual impact of Anthony Gormley’s 2007 work, 'Event Horizon'. Theoretical frameworks deriving from analytical approaches to performance, media representation and ethical dilemmas are evaluated as means to assimilate an indeterminate and challenging event, and the notion of what an ‘event’ may be is itself addressed.
Resumo:
We compare rain event size distributions derived from measurements in climatically different regions, which we find to be well approximated by power laws of similar exponents over broad ranges. Differences can be seen in the large-scale cutoffs of the distributions. Event duration distributions suggest that the scale-free aspects are related to the absence of characteristic scales in the meteorological mesoscale.
Resumo:
The canonical pathway of regulation of the germinal centre kinase (GCK) III subgroup member, mammalian Sterile20-related kinase 3 (MST3), involves a caspase-mediated cleavage between N-terminal catalytic and C-terminal regulatory domains with possible concurrent autophosphorylation of the activation loop MST3(Thr178-), induction of Ser-/Thr-protein kinase activity and nuclear localisation. We identified an alternative ‘non-canonical’ pathway of MST3 activation (regulated primarily through dephosphorylation) which may also be applicable to other GCKIII (and GCKVI) subgroup members. In the basal state, inactive MST3 co-immunoprecipitated with the Golgi protein, GOLGA2/gm130. Activation of MST3 by calyculin A (a protein Ser-/Thr- phosphatase 1/2A inhibitor) stimulated (auto)phosphorylation of MST3(Thr178-) in the catalytic domain with essentially simultaneous cis-autophosphorylation of MST3(Thr328-) in the regulatory domain, an event also requiring the MST3(341-376) sequence which acts as a putative docking domain. MST3(Thr178-) phosphorylation increased MST3 kinase activity but this activity was independent of MST3(Thr328-) phosphorylation. Interestingly, MST3(Thr328-) lies immediately C-terminal to a STRAD pseudokinase-like site recently identified as being involved in binding of GCKIII/GCKVI members to MO25 scaffolding proteins. MST3(Thr178- /Thr328-) phosphorylation was concurrent with dissociation of MST3 from GOLGA2/gm130 and association of MST3 with MO25, and MST3(Thr328-) phosphorylation was necessary for formation of the activated MST3-MO25 holocomplex.
Resumo:
During Oceanic Anoxic Event 1a (OAE 1a, 120 Ma; Li et al., 2008), organic carbon-rich layers were deposited in marine environments under anoxic conditions on a global scale. In this study, palaeoenvironmental conditions leading to this event are characterised by studying the Upper Barremian to the Lower Aptian succession of the Gorgo a Cerbara section (central Italy). For this, an integrated multi-proxy approach (δ13Ccarb; δ13Corg; δ18O; phosphorus; Total Organic Carbon, TOC; bulk-rock mineralogy, as well as redox-sensitive trace elements — RSTEs) has been applied. During the LateBarremian, thin organic-rich layers occur episodically, and associated Corg:Ptot ratios indicate the presence of intermittent dysoxic to anoxic conditions. Coarse correlations are observed between TOC, P and biogenic silica contents, indicating links between P availability, productivity, and TOC preservation. However, the corresponding δ13Ccarb and δ18O records remain quite stable, indicating that these brief periods of enhanced TOC preservation did not have sufficient impact on the marine carbon reservoir to deviate δ13C records. Around the Barremian–Aptian boundary, TOC-enriched layers become more frequent. These layers correlate with negative excursions in the δ13Ccarb and δ13Corg records, possibly due to a warming period as indicated by the δ18O record. During the earliest Aptian, this warming trend is reverted into a cooling trend, which is then followed by an important warming step near the onset of Oceanic Anoxic Event 1a (OAE 1a). During this time period, organic-rich intervals occur, which are characterised by the progressive increase in RSTE. The warming step prior the onset of OAE 1a is associated with the well-known negative spike in δ13Ccarb and δ13Corg records, an important peak in P accumulation, RSTE enrichments and Corg:Ptot ratios indicating the prevalence of anoxic conditions. The Selli Level itself may document a cooling phase. RSTE enrichments and Corg:Ptot ratios confirm the importance of anoxic conditions during OAE 1a at this site. The Gorgo a Cerbara section is interpreted to reflect the progressive impact of palaeoenvironmental change related to the formation of the Ontong-Java plate-basalt plateau, which started already around the Barremian–Aptian boundary and culminated into OAE 1a.
Resumo:
Progress in functional neuroimaging of the brain increasingly relies on the integration of data from complementary imaging modalities in order to improve spatiotemporal resolution and interpretability. However, the usefulness of merely statistical combinations is limited, since neural signal sources differ between modalities and are related non-trivially. We demonstrate here that a mean field model of brain activity can simultaneously predict EEG and fMRI BOLD with proper signal generation and expression. Simulations are shown using a realistic head model based on structural MRI, which includes both dense short-range background connectivity and long-range specific connectivity between brain regions. The distribution of modeled neural masses is comparable to the spatial resolution of fMRI BOLD, and the temporal resolution of the modeled dynamics, importantly including activity conduction, matches the fastest known EEG phenomena. The creation of a cortical mean field model with anatomically sound geometry, extensive connectivity, and proper signal expression is an important first step towards the model-based integration of multimodal neuroimages.
Resumo:
The warm event which spread in the tropical Atlantic during Spring-Summer 1984 is assumed to be partially initiated by atmospheric disturbances, themselves related to the major 1982–1983 El-Niño which occurred 1 year earlier in the Pacific. This paper tests such an hypothesis. For that purpose, an atmospheric general circulation model (AGCM) is forced by different conditions of climatic and observed sea surface temperature and an Atlantic ocean general circulation model (OGCM) is subsequently forced by the outputs of the AGCM. It is firstly shown that both the AGCM and the OGCM correctly behave when globally observed SST are used: the strengthening of the trades over the tropical Atlantic during 1983 and their subsequent weakening at the beginning of 1984 are well captured by the AGCM, and so is the Spring 1984 deepening of the thermocline in the eastern equatorial Atlantic, simulated by the OGCM. As assumed, the SST anomalies located in the El-Niño Pacific area are partly responsible for wind signal anomaly in the tropical Atlantic. Though this remotely forced atmospheric signal has a small amplitude, it can generate, in the OGCM run, an anomalous sub-surface signal leading to a flattening of the thermocline in the equatorial Atlantic. This forced oceanic experiment cannot explain the amplitude and phase of the observed sub-surface oceanic anomaly: part of the Atlantic ocean response, due to local interaction between ocean and atmosphere, requires a coupled approach. Nevertheless this experiment showed that anomalous conditions in the Pacific during 82–83 created favorable conditions for anomaly development in the Atlantic.
Resumo:
Recent research indicates gender differences in the impact of stress on decision behavior, but little is known about the brain mechanisms involved in these gender-specific stress effects. The current study used functional magnetic resonance imaging (fMRI) to determine whether induced stress resulted in gender-specific patterns of brain activation during a decision task involving monetary reward. Specifically, we manipulated physiological stress levels using a cold pressor task, prior to a risky decision making task. Healthy men (n = 24, 12 stressed) and women (n = 23, 11 stressed) completed the decision task after either cold pressor stress or a control task during the period of cortisol response to the cold pressor. Gender differences in behavior were present in stressed participants but not controls, such that stress led to greater reward collection and faster decision speed in males but less reward collection and slower decision speed in females. A gender-by-stress interaction was observed for the dorsal striatum and anterior insula. With cold stress, activation in these regions was increased in males but decreased in females. The findings of this study indicate that the impact of stress on reward-related decision processing differs depending on gender.
Resumo:
The Cévennes–Vivarais Mediterranean Hydrometeorological Observatory (OHM-CV) is a research initiative aimed at improving the understanding and modeling of the Mediterranean intense rain events that frequently result in devastating flash floods in southern France. A primary objective is to bring together the skills of meteorologists and hydrologists, modelers and instrumentalists, researchers and practitioners, to cope with these rather unpredictable events. In line with previously published flash-flood monographs, the present paper aims at documenting the 8–9 September 2002 catastrophic event, which resulted in 24 casualties and an economic damage evaluated at 1.2 billion euros (i.e., about 1 billion U.S. dollars) in the Gard region, France. A description of the synoptic meteorological situation is first given and shows that no particular precursor indicated the imminence of such an extreme event. Then, radar and rain gauge analyses are used to assess the magnitude of the rain event, which was particularly remarkable for its spatial extent with rain amounts greater than 200 mm in 24 h over 5500 km2. The maximum values of 600–700 mm observed locally are among the highest daily records in the region. The preliminary results of the postevent hydrological investigation show that the hydrologic response of the upstream watersheds of the Gard and Vidourle Rivers is consistent with the marked space–time structure of the rain event. It is noteworthy that peak specific discharges were very high over most of the affected areas (5–10 m3 s−1 km−2) and reached locally extraordinary values of more than 20 m3 s−1 km−2. A preliminary analysis indicates contrasting hydrological behaviors that seem to be related to geomorphological factors, notably the influence of karst in part of the region. An overview of the ongoing meteorological and hydrological research projects devoted to this case study within the OHM-CV is finally presented.
Resumo:
Many previous studies have shown that unforced climate model simulations exhibit decadal-scale fluctuations in the Atlantic meridional overturning circulation (AMOC), and that this variability can have impacts on surface climate fields. However, the robustness of these surface fingerprints across different models is less clear. Furthermore, with the potential for coupled feedbacks that may amplify or damp the response, it is not known whether the associated climate signals are linearly related to the strength of the AMOC changes, or if the fluctuation events exhibit nonlinear behaviour with respect to their strength or polarity. To explore these questions, we introduce an objective and flexible method for identifying the largest natural AMOC fluctuation events in multicentennial/multimillennial simulations of a variety of coupled climate models. The characteristics of the events are explored, including their magnitude, meridional coherence and spatial structure, as well as links with ocean heat transport and the horizontal circulation. The surface fingerprints in ocean temperature and salinity are examined, and compared with the results of linear regression analysis. It is found that the regressions generally provide a good indication of the surface changes associated with the largest AMOC events. However, there are some exceptions, including a nonlinear change in the atmospheric pressure signal, particularly at high latitudes, in HadCM3. Some asymmetries are also found between the changes associated with positive and negative AMOC events in the same model. Composite analysis suggests that there are signals that are robust across the largest AMOC events in each model, which provides reassurance that the surface changes associated with one particular event will be similar to those expected from regression analysis. However, large differences are found between the AMOC fingerprints in different models, which may hinder the prediction and attribution of such events in reality.
Resumo:
BACKGROUND: Neural responses to rewarding food cues are significantly different in the fed vs. fasted (>8 h food-deprived) state. However, the effect of eating to satiety after a shorter (more natural) intermeal interval on neural responses to both rewarding and aversive cues has not been examined. OBJECTIVE: With the use of a novel functional magnetic resonance imaging (fMRI) task, we investigated the effect of satiation on neural responses to both rewarding and aversive food tastes and pictures. DESIGN: Sixteen healthy participants (8 men, 8 women) were scanned on 2 separate test days, before and after eating a meal to satiation or after not eating for 4 h (satiated vs. premeal). fMRI blood oxygen level-dependent (BOLD) signals to the sight and/or taste of the stimuli were recorded. RESULTS: A whole-brain cluster-corrected analysis (P < 0.05) showed that satiation attenuated the BOLD response to both stimulus types in the ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex, nucleus accumbens, hypothalamus, and insula but increased BOLD activity in the dorsolateral prefrontal cortex (dlPFC; local maxima corrected to P ≤ 0.001). A psychophysiological interaction analysis showed that the vmPFC was more highly connected to the dlPFC when individuals were exposed to food stimuli when satiated than when not satiated. CONCLUSIONS: These results suggest that natural satiation attenuates activity in reward-related brain regions and increases activity in the dlPFC, which may reflect a "top down" cognitive influence on satiation. This trial was registered at clinicaltrials.gov as NCT02298049.
Resumo:
The early Aptian (125 to 121 Ma) records an episode of severe environmental change including a major perturbation of the carbon cycle, an oceanic anoxic event (OAE 1a, 122.5 Ma), a platform drowning episode and a biocalcification crisis. We propose to trace changes in the oxygenation state of the ocean during the early Aptian anoxic event using the redox-sensitive trace-element (RSTE) distribution, phosphorus accumulation rates (PARs) and organic-matter characterization in three different basins of the western Tethys. The following sections have been investigated: Gorgo a Cerbara (central Italy) in the Umbria Marche basin, Glaise (SE France) in the Vocontian basin and Cassis/La Bédoule (SE France) located in the Provencal basin. In the Gorgo a Cerbara section, RSTE distributions show a low background level along the main part of the section, contrasted by different maxima in concentrations within the Selli level. In the Glaise section, the Goguel level displays a weak increase in RSTE contents coeval with moderate TOC values. At Cassis/La Bédoule, no significant RSTE enrichments have been observed in sediments equivalent to the Selli level. These differences in the records of the geochemical proxies of the Selli level or its equivalent indicate the deposition under different redox conditions, probably related to the paleogeography. Our data indicate the development of anoxic–euxinic conditions in the deeper part of the Tethys during OAE 1a, whereas in the shallower environments, conditions were less reducing. Moreover, at Gorgo a Cerbara, the Selli level is characterized by rapid changes in the intensity of reducing conditions in the water column. Ocean eutrophication seems to be a major factor in the development and the persistence of anoxia as suggested by the PAR evolution. Higher PAR values at the onset of OAE 1a suggest an increase in nutrient input, whereas the return to lower values through the first part of the OAE 1a interval may be related to the weakened capacity to retain P in the sedimentary reservoir due to bottom-water oxygen depletion. This general pattern is contrasted by the data of Gorgo a Cerbara, where the sediments deposited during the OAE 1a interval show P-enrichments (mainly authigenic P). This is associated with maxima in TOC values and Corg:Ptot ratios, suggesting that a part of the remobilized P was trapped in the sediments and as such prevented from returning to the water column.