59 resultados para Error of measurement
Resumo:
We investigate the error dynamics for cycled data assimilation systems, such that the inverse problem of state determination is solved at tk, k = 1, 2, 3, ..., with a first guess given by the state propagated via a dynamical system model from time tk − 1 to time tk. In particular, for nonlinear dynamical systems that are Lipschitz continuous with respect to their initial states, we provide deterministic estimates for the development of the error ||ek|| := ||x(a)k − x(t)k|| between the estimated state x(a) and the true state x(t) over time. Clearly, observation error of size δ > 0 leads to an estimation error in every assimilation step. These errors can accumulate, if they are not (a) controlled in the reconstruction and (b) damped by the dynamical system under consideration. A data assimilation method is called stable, if the error in the estimate is bounded in time by some constant C. The key task of this work is to provide estimates for the error ||ek||, depending on the size δ of the observation error, the reconstruction operator Rα, the observation operator H and the Lipschitz constants K(1) and K(2) on the lower and higher modes of controlling the damping behaviour of the dynamics. We show that systems can be stabilized by choosing α sufficiently small, but the bound C will then depend on the data error δ in the form c||Rα||δ with some constant c. Since ||Rα|| → ∞ for α → 0, the constant might be large. Numerical examples for this behaviour in the nonlinear case are provided using a (low-dimensional) Lorenz '63 system.
Resumo:
Abstract This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is related to deficiencies in the land surface parametrization. The AGCM does not show this drying problem. For the Baltic Sea catchment, all models similarily overestimate the precipitation throughout the year except during the summer. This model deficit is probably caused by the internal model parametrizations, such as the large-scale condensation and the convection schemes.
Resumo:
We describe a one-port de-embedding technique suitable for the quasi-optical characterization of terahertz integrated components at frequencies beyond the operational range of most vector network analyzers. This technique is also suitable when the manufacturing of precision terminations to sufficiently fine tolerances for the application of a TRL de-embedding technique is not possible. The technique is based on vector reflection measurements of a series of easily realizable test pieces. A theoretical analysis is presented for the precision of the technique when implemented using a quasi-optical null-balanced bridge reflectometer. The analysis takes into account quantization effects in the linear and angular encoders associated with the balancing procedure, as well as source power and detector noise equivalent power. The precision in measuring waveguide characteristic impedance and attenuation using this de-embedding technique is further analyzed after taking into account changes in the power coupled due to axial, rotational, and lateral alignment errors between the device under test and the instruments' test port. The analysis is based on the propagation of errors after assuming imperfect coupling of two fundamental Gaussian beams. The required precision in repositioning the samples at the instruments' test-port is discussed. Quasi-optical measurements using the de-embedding process for a WR-8 adjustable precision short at 125 GHz are presented. The de-embedding methodology may be extended to allow the determination of S-parameters of arbitrary two-port junctions. The measurement technique proposed should prove most useful above 325 GHz where there is a lack of measurement standards.
Resumo:
A system for continuous data assimilation described recently (Bengtsson & Gustavsson, 1971) has been further developed and tested under more realistic conditions. A balanced barotropic model is used and the integration is performed over an octagon covering the area to the north of 20° N. Comparisons have been made between using data from the actual aerological network and data from a satellite in a polar orbit. The result of the analyses has been studied in different subregions situated in data sparse as well as in data dense areas. The errors of the analysis have also been studied in the wave spectrum domain. Updating is performed using data generated by the model but also by model-independent data. Rather great differences are obtained between the two experiments especially with respect to the ultra-long waves. The more realistic approach gives much larger analysis error. In general the satellite updating yields somewhat better result than the updating from the conventional aerological network especially in the data sparse areas over the oceans. Most of the experiments are performed by a satellite making 200 observations/track, a sidescan capability of 40° and with a RMS-error of 20 m. It is found that the effect of increasing the number of satellite observations from 100 to 200 per orbit is almost negligible. Similarly the effect is small of improving the observations by diminishing the RMS-error below a certain value. An observing system using two satellites 90° out of phase has also been investigated. This is found to imply a substantial improvement. Finally an experiment has been performed using actual SIRS-soundings from NIMBUS IV. With respect to the very small number of soundings at 500 mb, 142 during 48 hours, the result can be regarded as quite satisfactory.
Resumo:
A system for continuous data assimilation is presented and discussed. To simulate the dynamical development a channel version of a balanced barotropic model is used and geopotential (height) data are assimilated into the models computations as data become available. In the first experiment the updating is performed every 24th, 12th and 6th hours with a given network. The stations are distributed at random in 4 groups in order to simulate 4 areas with different density of stations. Optimum interpolation is performed for the difference between the forecast and the valid observations. The RMS-error of the analyses is reduced in time, and the error being smaller the more frequent the updating is performed. The updating every 6th hour yields an error in the analysis less than the RMS-error of the observation. In a second experiment the updating is performed by data from a moving satellite with a side-scan capability of about 15°. If the satellite data are analysed at every time step before they are introduced into the system the error of the analysis is reduced to a value below the RMS-error of the observation already after 24 hours and yields as a whole a better result than updating from a fixed network. If the satellite data are introduced without any modification the error of the analysis is reduced much slower and it takes about 4 days to reach a comparable result to the one where the data have been analysed.
Resumo:
Optimal estimation (OE) improves sea surface temperature (SST) estimated from satellite infrared imagery in the “split-window”, in comparison to SST retrieved using the usual multi-channel (MCSST) or non-linear (NLSST) estimators. This is demonstrated using three months of observations of the Advanced Very High Resolution Radiometer (AVHRR) on the first Meteorological Operational satellite (Metop-A), matched in time and space to drifter SSTs collected on the global telecommunications system. There are 32,175 matches. The prior for the OE is forecast atmospheric fields from the Météo-France global numerical weather prediction system (ARPEGE), the forward model is RTTOV8.7, and a reduced state vector comprising SST and total column water vapour (TCWV) is used. Operational NLSST coefficients give mean and standard deviation (SD) of the difference between satellite and drifter SSTs of 0.00 and 0.72 K. The “best possible” NLSST and MCSST coefficients, empirically regressed on the data themselves, give zero mean difference and SDs of 0.66 K and 0.73 K respectively. Significant contributions to the global SD arise from regional systematic errors (biases) of several tenths of kelvin in the NLSST. With no bias corrections to either prior fields or forward model, the SSTs retrieved by OE minus drifter SSTs have mean and SD of − 0.16 and 0.49 K respectively. The reduction in SD below the “best possible” regression results shows that OE deals with structural limitations of the NLSST and MCSST algorithms. Using simple empirical bias corrections to improve the OE, retrieved minus drifter SSTs are obtained with mean and SD of − 0.06 and 0.44 K respectively. Regional biases are greatly reduced, such that the absolute bias is less than 0.1 K in 61% of 10°-latitude by 30°-longitude cells. OE also allows a statistic of the agreement between modelled and measured brightness temperatures to be calculated. We show that this measure is more efficient than the current system of confidence levels at identifying reliable retrievals, and that the best 75% of satellite SSTs by this measure have negligible bias and retrieval error of order 0.25 K.
Resumo:
We examine how the accuracy of real-time forecasts from models that include autoregressive terms can be improved by estimating the models on ‘lightly revised’ data instead of using data from the latest-available vintage. The benefits of estimating autoregressive models on lightly revised data are related to the nature of the data revision process and the underlying process for the true values. Empirically, we find improvements in root mean square forecasting error of 2–4% when forecasting output growth and inflation with univariate models, and of 8% with multivariate models. We show that multiple-vintage models, which explicitly model data revisions, require large estimation samples to deliver competitive forecasts. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Acute intermittent porphyria is an inborn error of haem synthesis which is transmitted as a dominant character with variable phenotypic expression. The disorder is caused by a partial deficiency of porphobilinogen deaminase in all tissues so far studied. The nature of the enzymatic deficiency of porphobilinogen deaminase in haemolysates from patients with acute intermittent porphyria was examined by the use of monospecific antibody probes. In affected heterozygotes from three British pedigrees of diverse ancestry, the catalytic deficiency of porphobilinogen deaminase was accompanied by diminished enzyme protein, as determined by radial immunodiffusion. No evidence of functionally attenuated enzyme was demonstrable by kinetic studies. The molecular forms of the residual enzyme were investigated in red cell extracts and in lysed preparations of reticulocytes by a sensitive Western blotting procedure. This revealed the presence of reduced amounts of porphobilinogen deaminase polypeptide co-migrating with wild type enzyme (Mr approximately 40,000), and no evidence of variant forms in situ. The studies show that porphobilinogen deaminase deficiency in acute intermittent porphyria is commonly associated with a CRM-phenotype. The residual activity under these circumstances is thus related to expression of a single normal allele, since sensitive techniques detected neither aberrant nor degraded forms of the enzyme in erythroid tissues.
Resumo:
This technique paper describes a novel method for quantitatively and routinely identifying auroral breakup following substorm onset using the Time History of Events and Macroscale Interactions During Substorms (THEMIS) all-sky imagers (ASIs). Substorm onset is characterised by a brightening of the aurora that is followed by auroral poleward expansion and auroral breakup. This breakup can be identified by a sharp increase in the auroral intensity i(t) and the time derivative of auroral intensity i'(t). Utilising both i(t) and i'(t) we have developed an algorithm for identifying the time interval and spatial location of auroral breakup during the substorm expansion phase within the field of view of ASI data based solely on quantifiable characteristics of the optical auroral emissions. We compare the time interval determined by the algorithm to independently identified auroral onset times from three previously published studies. In each case the time interval determined by the algorithm is within error of the onset independently identified by the prior studies. We further show the utility of the algorithm by comparing the breakup intervals determined using the automated algorithm to an independent list of substorm onset times. We demonstrate that up to 50% of the breakup intervals characterised by the algorithm are within the uncertainty of the times identified in the independent list. The quantitative description and routine identification of an interval of auroral brightening during the substorm expansion phase provides a foundation for unbiased statistical analysis of the aurora to probe the physics of the auroral substorm as a new scientific tool for aiding the identification of the processes leading to auroral substorm onset.
Resumo:
The evidence for anthropogenic climate change continues to strengthen, and concerns about severe weather events are increasing. As a result, scientific interest is rapidly shifting from detection and attribution of global climate change to prediction of its impacts at the regional scale. However, nearly everything we have any confidence in when it comes to climate change is related to global patterns of surface temperature, which are primarily controlled by thermodynamics. In contrast, we have much less confidence in atmospheric circulation aspects of climate change, which are primarily controlled by dynamics and exert a strong control on regional climate. Model projections of circulation-related fields, including precipitation, show a wide range of possible outcomes, even on centennial timescales. Sources of uncertainty include low-frequency chaotic variability and the sensitivity to model error of the circulation response to climate forcing. As the circulation response to external forcing appears to project strongly onto existing patterns of variability, knowledge of errors in the dynamics of variability may provide some constraints on model projections. Nevertheless, higher scientific confidence in circulation-related aspects of climate change will be difficult to obtain. For effective decision-making, it is necessary to move to a more explicitly probabilistic, risk-based approach.
Resumo:
The techno-economic performance of a small wind turbine is very sensitive to the available wind resource. However, due to financial and practical constraints installers rely on low resolution wind speed databases to assess a potential site. This study investigates whether the two site assessment tools currently used in the UK, NOABL or the Energy Saving Trust wind speed estimator, are accurate enough to estimate the techno-economic performance of a small wind turbine. Both the tools tend to overestimate the wind speed, with a mean error of 23% and 18% for the NOABL and Energy Saving Trust tool respectively. A techno-economic assessment of 33 small wind turbines at each site has shown that these errors can have a significant impact on the estimated load factor of an installation. Consequently, site/turbine combinations which are not economically viable can be predicted to be viable. Furthermore, both models tend to underestimate the wind resource at relatively high wind speed sites, this can lead to missed opportunities as economically viable turbine/site combinations are predicted to be non-viable. These results show that a better understanding of the local wind resource is a required to make small wind turbines a viable technology in the UK.
Resumo:
The Met Office 1km radar-derived precipitation-rate composite over 8 years (2006–2013) is examined to evaluate whether it provides an accurate representation of annual-average precipitation over Great Britain and Ireland over long periods of time. The annual-average precipitation from the radar composite is comparable with gauge measurements, with an average error of +23mmyr−1 over Great Britain and Ireland, +29mmyr−1 (3%) over the United Kingdom and –781mmyr−1 (46%) over the Republic of Ireland. The radar-derived precipitation composite is useful over the United Kingdom including Northern Ireland, but not accurate over the Republic of Ireland, particularly in the south.
Resumo:
Recent work in animals suggests that the extent of early tactile stimulation by parents of offspring is an important element in early caregiving. We evaluate the psychometric properties of a new parent-report measure designed to assess frequency of tactile stimulation across multiple caregiving domains in infancy. We describe the full item set of the Parent-Infant Caregiving Touch Scale (PICTS) and, using data from a UK longitudinal Child Health and Development Study, the response frequencies and factor structure and whether it was invariant over two time points in early development (5 and 9 weeks). When their infant was 9 weeks old, 838 mothers responded on the PICTS while a stratified subsample of 268 mothers completed PICTS at an earlier 5 week old assessment (229 responded on both occasions). Three PICTS factors were identified reflecting stroking, holding and affective communication. These were moderately to strongly correlated at each of the two time points of interest and were unrelated to, and therefore distinct from, a traditional measure of maternal sensitivity at 7-months. A wholly stable psychometry over 5 and 9-week assessments was not identified which suggests that behavior profiles differ slightly for younger and older infants. Tests of measurement invariance demonstrated that all three factors are characterized by full configural and metric invariance, as well as a moderate degree of evidence of scalar invariance for the stroking factor. We propose the PICTS as a valuable new measure of important aspects of caregiving in infancy.
Resumo:
The aim of this study was to assess and improve the accuracy of biotransfer models for the organic pollutants (PCBs, PCDD/Fs, PBDEs, PFCAs, and pesticides) into cow’s milk and beef used in human exposure assessment. Metabolic rate in cattle is known as a key parameter for this biotransfer, however few experimental data and no simulation methods are currently available. In this research, metabolic rate was estimated using existing QSAR biodegradation models of microorganisms (BioWIN) and fish (EPI-HL and IFS-HL). This simulated metabolic rate was then incorporated into the mechanistic cattle biotransfer models (RAIDAR, ACC-HUMAN, OMEGA, and CKow). The goodness of fit tests showed that RAIDAR, ACC-HUMAN, OMEGA model performances were significantly improved using either of the QSARs when comparing the new model outputs to observed data. The CKow model is the only one that separates the processes in the gut and liver. This model showed the lowest residual error of all the models tested when the BioWIN model was used to represent the ruminant metabolic process in the gut and the two fish QSARs were used to represent the metabolic process in the liver. Our testing included EUSES and CalTOX which are KOW-regression models that are widely used in regulatory assessment. New regressions based on the simulated rate of the two metabolic processes are also proposed as an alternative to KOW-regression models for a screening risk assessment. The modified CKow model is more physiologically realistic, but has equivalent usability to existing KOW-regression models for estimating cattle biotransfer of organic pollutants.