136 resultados para Equations, Cubic.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the oscillating property of positive solutions and the global asymptotic stability of the unique equilibrium of the two rational difference equations [GRAPHICS] and [GRAPHICS] where a is a nonnegative constant. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fully connected cubic networks (FCCNs) are a class of newly proposed hierarchical interconnection networks for multicomputer systems, which enjoy the strengths of constant node degree and good expandability. The shortest path routing in FCCNs is an open problem. In this paper, we present an oblivious routing algorithm for n-level FCCN with N = 8(n) nodes, and prove that this algorithm creates a shortest path from the source to the destination. At the costs of both an O(N)-parallel-step off-line preprocessing phase and a list of size N stored at each node, the proposed algorithm is carried out at each related node in O(n) time. In some cases the proposed algorithm is superior to the one proposed by Chang and Wang in terms of the length of the routing path. This justifies the utility of our routing strategy. (C) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the behavior of the positive solutions of the system of two difference equations [GRAPHICS] where p >= 1, r >= 1, s >= 1, A >= 0, and x(1-r), x(2-r),..., x(0), y(1-max) {p.s},..., y(0) are positive real numbers. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite-difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow-water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gasdynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearised problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second-order scheme which avoids non-physical, spurious oscillations. An extension to the two-dimensional equations with source terms, is included. The scheme is applied to a dam-break problem with cylindrical symmetry.