57 resultados para Elastic contact forces
Resumo:
The stability of stationary flow of a two-dimensional ice sheet is studied when the ice obeys a power flow law (Glen's flow law). The mass accumulation rate at the top is assumed to depend on elevation and span and the bed supporting the ice sheet consists of an elastic layer lying on a rigid surface. The normal perturbation of the free surface of the ice sheet is a singular eigenvalue problem. The singularity of the perturbation at the front of the ice sheet is considered using matched asymptotic expansions, and the eigenvalue problem is seen to reduce to that with fixed ice front. Numerical solution of the perturbation eigenvalue problem shows that the dependence of accumulation rate on elevation permits the existence of unstable solutions when the equilibrium line is higher than the bed at the ice divide. Alternatively, when the equilibrium line is lower than the bed, there are only stable solutions. Softening of the bed, expressed through a decrease of its elastic modulus, has a stabilising effect on the ice sheet.
Resumo:
In this paper we report on a major empirical study of centripetal and centrifugal forces in the City of London financial services agglomeration. The study sheds light on (1) the manner and magnitude of firm interaction in the agglomeration; (2) the characteristics of the agglomeration that aid the competitiveness of incumbent firms; and (3) the problems associated with agglomeration. In addressing these issues, we use the data to (1) test emerging theory that explains the high productivity and innovation of agglomerations in terms of their ability to generate and diffuse knowledge; and (2) evaluate the ‘end of geography’ thesis.
Resumo:
An efficient two-level model identification method aiming at maximising a model׳s generalisation capability is proposed for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularisation parameters in the elastic net are optimised using a particle swarm optimisation (PSO) algorithm at the upper level by minimising the leave one out (LOO) mean square error (LOOMSE). There are two elements of original contributions. Firstly an elastic net cost function is defined and applied based on orthogonal decomposition, which facilitates the automatic model structure selection process with no need of using a predetermined error tolerance to terminate the forward selection process. Secondly it is shown that the LOOMSE based on the resultant ENOFR models can be analytically computed without actually splitting the data set, and the associate computation cost is small due to the ENOFR procedure. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.
Resumo:
The multicomponent nonideal gas lattice Boltzmann model by Shan and Chen (S-C) is used to study the immiscible displacement in a sinusoidal tube. The movement of interface and the contact point (contact line in three-dimension) is studied. Due to the roughness of the boundary, the contact point shows "stick-slip" mechanics. The "stick-slip" effect decreases as the speed of the interface increases. For fluids that are nonwetting, the interface is almost perpendicular to the boundaries at most time, although its shapes at different position of the tube are rather different. When the tube becomes narrow, the interface turns a complex curves rather than remains simple menisci. The velocity is found to vary considerably between the neighbor nodes close to the contact point, consistent with the experimental observation that the velocity is multi-values on the contact line. Finally, the effect of three boundary conditions is discussed. The average speed is found different for different boundary conditions. The simple bounce-back rule makes the contact point move fastest. Both the simple bounce-back and the no-slip bounce-back rules are more sensitive to the roughness of the boundary in comparison with the half-way bounce-back rule. The simulation results suggest that the S-C model may be a promising tool in simulating the displacement behaviour of two immiscible fluids in complex geometry.
Resumo:
A lattice Boltzmann model able to simulate viscous fluid systems with elastic and movable boundaries is proposed. By introducing the virtual distribution function at the boundary, the Galilean invariance is recovered for the full system. As examples of application, the how in elastic vessels is simulated with the pressure-radius relationship similar to that of the pulmonary blood vessels. The numerical results for steady how are in good agreement with the analytical prediction, while the simulation results for pulsative how agree with the experimental observation of the aortic flows qualitatively. The approach has potential application in the study of the complex fluid systems such as the suspension system as well as the arterial blood flow.
Resumo:
The Eph kinases, EphA4 and EphB1 and their ligand, ephrinB1 have been previously reported to be present in platelets where they contribute to thrombus stability. While thrombus formation allows for Eph-ephrin engagement and bidirectional signalling, the importance specifically of Eph kinase or ephrin signalling in regulating platelet function remained unidentified. In the present study, a genetic approach was used in mice to establish the contribution of signalling orchestrated by the cytoplasmic domain of EphB2 (a newly discovered Eph kinase in platelets) in platelet activation and thrombus formation. We conclude that EphB2 signalling is involved in the regulation of thrombus formation and clot retraction. Furthermore, the cytoplasmic tail of this Eph kinase regulates initial platelet activation in a contact-independent manner in the absence of Eph-ephrin ligation between platelets. Together these data demonstrate that EphB2 signalling not only modulates platelet function within a thrombus but is also involved in the regulation of the function of isolated platelets in a contact-independent manner.
Resumo:
Autism spectrum conditions (autism) affect ~1% of the population and are characterized by deficits in social communication. Oxytocin has been widely reported to affect social-communicative function and its neural underpinnings. Here we report the first evidence that intranasal oxytocin administration improves a core problem that individuals with autism have in using eye contact appropriately in real-world social settings. A randomized double-blind, placebo-controlled, within-subjects design is used to examine how intranasal administration of 24 IU of oxytocin affects gaze behavior for 32 adult males with autism and 34 controls in a real-time interaction with a researcher. This interactive paradigm bypasses many of the limitations encountered with conventional static or computer-based stimuli. Eye movements are recorded using eye tracking, providing an objective measurement of looking patterns. The measure is shown to be sensitive to the reduced eye contact commonly reported in autism, with the autism group spending less time looking to the eye region of the face than controls. Oxytocin administration selectively enhanced gaze to the eyes in both the autism and control groups (transformed mean eye-fixation difference per second=0.082; 95% CI:0.025–0.14, P=0.006). Within the autism group, oxytocin has the most effect on fixation duration in individuals with impaired levels of eye contact at baseline (Cohen’s d=0.86). These findings demonstrate that the potential benefits of oxytocin in autism extend to a real-time interaction, providing evidence of a therapeutic effect in a key aspect of social communication.