52 resultados para El Nino Current - Environmental aspects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we address two topical questions: How do the quality of governance and agricultural intensification impact on spatial expansion of agriculture? Which aspects of governance are more likely to ensure that agricultural intensification allows sparing land for nature? Using data from the Food and Agriculture Organization, the World Bank, the World Database on Protected Areas, and the Yale Center for Environmental Law and Policy, we estimate a panel data model for six South American countries and quantify the effects of major determinants of agricultural land expansion, including various dimensions of governance, over the period 1970–2006. The results indicate that the effect of agricultural intensification on agricultural expansion is conditional on the quality and type of governance. When considering conventional aspects of governance, agricultural intensification leads to an expansion of agricultural area when governance scores are high. When looking specifically at environmental aspects of governance, intensification leads to a spatial contraction of agriculture when governance scores are high, signaling a sustainable intensification process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their ‘resilience’) is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assess Indian summer monsoon seasonal forecasts in GloSea5-GC2, the Met Office fully coupled subseasonal to seasonal ensemble forecasting system. Using several metrics, GloSea5-GC2 shows similar skill to other state-of-the-art forecast systems. The prediction skill of the large-scale South Asian monsoon circulation is higher than that of Indian monsoon rainfall. Using multiple linear regression analysis we evaluate relationships between Indian monsoon rainfall and five possible drivers of monsoon interannual variability. Over the time period studied (1992-2011), the El Nino-Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) are the most important of these drivers in both observations and GloSea5-GC2. Our analysis indicates that ENSO and its teleconnection with the Indian rainfall are well represented in GloSea5-GC2. However, the relationship between the IOD and Indian rainfall anomalies is too weak in GloSea5-GC2, which may be limiting the prediction skill of the local monsoon circulation and Indian rainfall. We show that this weak relationship likely results from a coupled mean state bias that limits the impact of anomalous wind forcing on SST variability, resulting in erroneous IOD SST anomalies. Known difficulties in representing convective precipitation over India may also play a role. Since Indian rainfall responds weakly to the IOD, it responds more consistently to ENSO than in observations. Our assessment identifies specific coupled biases that are likely limiting GloSea5-GC2 prediction skill, providing targets for model improvement.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The performance of the atmospheric component of the new Hadley Centre Global Environmental Model (HadGEM1) is assessed in terms of its ability to represent a selection of key aspects of variability in the Tropics and extratropics. These include midlatitude storm tracks and blocking activity, synoptic variability over Europe, and the North Atlantic Oscillation together with tropical convection, the Madden-Julian oscillation, and the Asian summer monsoon. Comparisons with the previous model, the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3), demonstrate that there has been a considerable increase in the transient eddy kinetic energy (EKE), bringing HadGEM1 into closer agreement with current reanalyses. This increase in EKE results from the increased horizontal resolution and, in combination with the improved physical parameterizations, leads to improvements in the representation of Northern Hemisphere storm tracks and blocking. The simulation of synoptic weather regimes over Europe is also greatly improved compared to HadCM3, again due to both increased resolution and other model developments. The variability of convection in the equatorial region is generally stronger and closer to observations than in HadCM3. There is, however, still limited convective variance coincident with several of the observed equatorial wave modes. Simulation of the Madden-Julian oscillation is improved in HadGEM1: both the activity and interannual variability are increased and the eastward propagation, although slower than observed, is much better simulated. While some aspects of the climatology of the Asian summer monsoon are improved in HadGEM1, the upper-level winds are too weak and the simulation of precipitation deteriorates. The dominant modes of monsoon interannual variability are similar in the two models, although in HadCM3 this is linked to SST forcing, while in HadGEM1 internal variability dominates. Overall, analysis of the phenomena considered here indicates that HadGEM1 performs well and, in many important respects, improves upon HadCM3. Together with the improved representation of the mean climate, this improvement in the simulation of atmospheric variability suggests that HadGEM1 provides a sound basis for future studies of climate and climate change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Bahrain International Circuit (BIC) is considered its one of the best international racing car track in terms of technical aspects and architectural quality. Two Formula 1 races have been hosted in the Kingdom of Bahrain, in 2004 and 2005, at BIC. The BIC had recently won the award of the best international racing car circuit. This paper highlights on the elements that contributed to the success of such project starting from the architectural aspects, construction, challenges, tendering process, risk management, the workforce, speed of the construction method, and future prospects for harnessing solar and wind energy for sustainable electrification and production of water for the circuit, i.e. making BIC green and environment-friendly international circuit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pacific ocean temperature anomalies associated with the El Niño–Southern Oscillation (ENSO) modulate atmospheric convection and hence thunderstorm electrification. The generated current flows globally via the atmospheric electric circuit, which can be monitored anywhere on Earth. Atmospheric electricity measurements made at Shetland (in Scotland) display a mean global circuit response to ENSO that is characterized by strengthening during 'El Niño' conditions, and weakening during 'La Niña' conditions. Examining the hourly varying response indicates that a potential gradient (PG) increase around noon UT is likely to be associated with a change in atmospheric convection and resultant lightning activity over equatorial Africa and Eastern Asia. A secondary increase in PG just after midnight UT can be attributed to more shower clouds in the central Pacific ocean during an 'El Niño'.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The destructive environmental and socio-economic impacts of the El Niño/Southern Oscillation1, 2 (ENSO) demand an improved understanding of how ENSO will change under future greenhouse warming. Robust projected changes in certain aspects of ENSO have been recently established3, 4, 5. However, there is as yet no consensus on the change in the magnitude of the associated sea surface temperature (SST) variability6, 7, 8, commonly used to represent ENSO amplitude1, 6, despite its strong effects on marine ecosystems and rainfall worldwide1, 2, 3, 4, 9. Here we show that the response of ENSO SST amplitude is time-varying, with an increasing trend in ENSO amplitude before 2040, followed by a decreasing trend thereafter. We attribute the previous lack of consensus to an expectation that the trend in ENSO amplitude over the entire twenty-first century is unidirectional, and to unrealistic model dynamics of tropical Pacific SST variability. We examine these complex processes across 22 models in the Coupled Model Intercomparison Project phase 5 (CMIP5) database10, forced under historical and greenhouse warming conditions. The nine most realistic models identified show a strong consensus on the time-varying response and reveal that the non-unidirectional behaviour is linked to a longitudinal difference in the surface warming rate across the Indo-Pacific basin. Our results carry important implications for climate projections and climate adaptation pathways.