65 resultados para EXCITED-STATE PROCESSES
Resumo:
Executive summary Nature of the problem (science/management/policy) • Freshwater ecosystems play a key role in the European nitrogen (N) cycle, both as a reactive agent that transfers, stores and processes N loadings from the atmosphere and terrestrial ecosystems, and as a natural environment severely impacted by the increase of these loadings. Approaches • This chapter is a review of major processes and factors controlling N transport and transformations for running waters, standing waters, groundwaters and riparian wetlands. Key findings/state of knowledge • The major factor controlling N processes in freshwater ecosystems is the residence time of water, which varies widely both in space and in time, and which is sensitive to changes in climate, land use and management. • The effects of increased N loadings to European freshwaters include acidification in semi-natural environments, and eutrophication in more disturbed ecosystems, with associated loss of biodiversity in both cases. • An important part of the nitrogen transferred by surface waters is in the form of organic N, as dissolved organic N (DON) and particulate organic N (PON). This part is dominant in semi-natural catchments throughout Europe and remains a significant component of the total N load even in nitrate enriched rivers. • In eutrophicated standing freshwaters N can be a factor limiting or co-limiting biological production, and control of both N and phosphorus (P) loading is oft en needed in impacted areas, if ecological quality is to be restored. Major uncertainties/challenges • The importance of storage and denitrifi cation in aquifers is a major uncertainty in the global N cycle, and controls in part the response of catchments to land use or management changes. In some aquifers, the increase of N concentrations will continue for decades even if efficient mitigation measures are implemented now. • Nitrate retention by riparian wetlands has oft en been highlighted. However, their use for mitigation must be treated with caution, since their effectiveness is difficult to predict, and side effects include increased DON emissions to adjacent open waters, N2O emissions to the atmosphere, and loss of biodiversity. • In fact, the character and specific spatial origins of DON are not fully understood, and similarly the quantitative importance of indirect N2O emissions from freshwater ecosystems as a result of N leaching losses from agricultural soils is still poorly known at the regional scale. • These major uncertainties remain due to the lack of adequate monitoring (all forms of N at a relevant frequency), especially – but not only – in the southern and eastern EU countries. Recommendations (research/policy) • The great variability of transfer pathways, buffering capacity and sensitivity of the catchments and of the freshwater ecosystems calls for site specific mitigation measures rather than standard ones applied at regional to national scale. • The spatial and temporal variations of the N forms, the processes controlling the transport and transformation of N within freshwaters, require further investigation if the role of N in influencing freshwater ecosystem health is to be better understood, underpinning the implementation of the EU Water Framework Directive for European freshwaters.
Resumo:
Land policy in micro-states and the land administration that underpins it is often devised within a legacy framework inherited from a colonial past. Independence has allowed self-determination of the future political direction yet the range, legal framework, institutional structure and administration systems tend to mirror those of ex-colonial powers. Do land policies, administration systems and processes developed to serve large heavily populated countries scale down to serve the requirements of micro-states? The evidence suggests not: many land administration systems in the Caribbean face difficulties due to poor records, unclear title, exploitation of state lands, incomplete or ongoing land reform programmes, irregular or illegal settlement and non-enforced planning regulations. Land matters are typically the responsibility of several government departments and agencies responsible for land titling and registration, cadastral surveying of property interests, physical planning, taxation and financial regulation. Although planning is regarded as a land administration function, organisational responsibility usually rests with local rather than central government in large countries, but in microstates local government may be politically weak, under-resourced or even non-existent. Using a case study approach this paper explores how planning functions are organised in the Caribbean state of St Vincent & the Grenadines in relation to land administration as a whole and compares the arrangement with other independent micro-states in the region.
Resumo:
The objective of this paper is to reconsider the Maximum Entropy Production conjecture (MEP) in the context of a very simple two-dimensional zonal-vertical climate model able to represent the total material entropy production due at the same time to both horizontal and vertical heat fluxes. MEP is applied first to a simple four-box model of climate which accounts for both horizontal and vertical material heat fluxes. It is shown that, under condition of fixed insolation, a MEP solution is found with reasonably realistic temperature and heat fluxes, thus generalising results from independent two-box horizontal or vertical models. It is also shown that the meridional and the vertical entropy production terms are independently involved in the maximisation and thus MEP can be applied to each subsystem with fixed boundary conditions. We then extend the four-box model by increasing its resolution, and compare it with GCM output. A MEP solution is found which is fairly realistic as far as the horizontal large scale organisation of the climate is concerned whereas the vertical structure looks to be unrealistic and presents seriously unstable features. This study suggest that the thermal meridional structure of the atmosphere is predicted fairly well by MEP once the insolation is given but the vertical structure of the atmosphere cannot be predicted satisfactorily by MEP unless constraints are imposed to represent the determination of longwave absorption by water vapour and clouds as a function of the state of the climate. Furthermore an order-of-magnitude estimate of contributions to the material entropy production due to horizontal and vertical processes within the climate system is provided by using two different methods. In both cases we found that approximately 40 mW m−2 K−1 of material entropy production is due to vertical heat transport and 5–7 mW m−2 K−1 to horizontal heat transport
Resumo:
What impact do international state-building missions have on the domestic politics of states they seek to build, and how can we measure this impact with confidence? This article seeks to address these questions and challenge some existing approaches that often appear to assume that state-builders leave lasting legacies rather than demonstrating such influence with the use of carefully chosen empirical evidence. Too often, domestic conditions that follow in the wake of international state-building are assumed to follow as a result of international intervention, usually due to insufficient attention to the causal processes that link international actions to domestic outcomes. The article calls for greater appreciation of the methodological challenges to establishing causal inferences regarding the legacies of state-building and identifies three qualitative methodological strategies—process tracing, counterfactual analysis, and the use of control cases—that can be used to improve confidence in causal claims about state-building legacies. The article concludes with a case study of international state-building in East Timor, highlighting several flaws of existing evaluations of the United Nations' role in East Timor and identifying the critical role that domestic actors play even in the context of authoritative international intervention
Resumo:
The purpose of this volume is to examine and evaluate the impact of international state-building interventions on the political economy of post-conflict countries over the last 20 years. It analyses how international interventions have shaped political and economic dynamics and structures – both formal and informal – and what kind of state, and what kind of state-society relations have been created as a result, through three different lenses: first, through the approaches taken by different international actors like the UN, the International Financial Institutions, or the European Union, to state-building; second, through detailed analysis of key state-building policies; and third, through a wide range of country case studies. Amongst the recurring themes that are highlighted by the book’s focus on the political economy of state-building, and that help to explain why international state-building interventions have tended to fall short of the visions of interveners and local populations alike are evidence of important continuities between war-time and “post-conflict” economies and authority structures, which are often consolidated as a consequence of international involvement; tensions arising from what are often the competing interests and values held by different interveners and local actors; and, finally, the continuing salience of economic and political violence in state-building processes and war-to-peace transitions. The book aims to offer a more nuanced understanding of the complex impact of state-building practices on post-conflict societies, and of the political economy of post-conflict state-building.
Resumo:
The extra-tropical response to El Niño in configurations of a coupled model with increased horizontal resolution in the oceanic component is shown to be more realistic than in configurations with a low resolution oceanic component. This general conclusion is independent of the atmospheric resolution. Resolving small-scale processes in the ocean produces a more realistic oceanic mean state, with a reduced cold tongue bias, which in turn allows the atmospheric model component to be forced more realistically. A realistic atmospheric basic state is critical in order to represent Rossby wave propagation in response to El Niño, and hence the extra-tropical response to El Niño. Through the use of high and low resolution configurations of the forced atmospheric-only model component we show that, in isolation, atmospheric resolution does not significantly affect the simulation of the extra-tropical response to El Niño. It is demonstrated, through perturbations to the SST forcing of the atmospheric model component, that biases in the climatological SST field typical of coupled model configurations with low oceanic resolution can account for the erroneous atmospheric basic state seen in these coupled model configurations. These results highlight the importance of resolving small-scale oceanic processes in producing a realistic large-scale mean climate in coupled models, and suggest that it might may be possible to “squeeze out” valuable extra performance from coupled models through increases to oceanic resolution alone.
Resumo:
Earth system models are increasing in complexity and incorporating more processes than their predecessors, making them important tools for studying the global carbon cycle. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes, with coupled climate-carbon cycle models that represent land-use change simulating total land carbon stores by 2100 that vary by as much as 600 Pg C given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous model evaluation methodologies. Here we assess the state-of-the-art with respect to evaluation of Earth system models, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeo data and (ii) metrics for evaluation, and discuss a range of strategies, such as the inclusion of pre-calibration, combined process- and system-level evaluation, and the use of emergent constraints, that can contribute towards the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but it is also a challenge, as more knowledge about data uncertainties is required in order to determine robust evaluation methodologies that move the field of ESM evaluation from "beauty contest" toward the development of useful constraints on model behaviour.
Resumo:
During the last termination (from ~18 000 years ago to ~9000 years ago), the climate significantly warmed and the ice sheets melted. Simultaneously, atmospheric CO2 increased from ~190 ppm to ~260 ppm. Although this CO2 rise plays an important role in the deglacial warming, the reasons for its evolution are difficult to explain. Only box models have been used to run transient simulations of this carbon cycle transition, but by forcing the model with data constrained scenarios of the evolution of temperature, sea level, sea ice, NADW formation, Southern Ocean vertical mixing and biological carbon pump. More complex models (including GCMs) have investigated some of these mechanisms but they have only been used to try and explain LGM versus present day steady-state climates. In this study we use a coupled climate-carbon model of intermediate complexity to explore the role of three oceanic processes in transient simulations: the sinking of brines, stratification-dependent diffusion and iron fertilization. Carbonate compensation is accounted for in these simulations. We show that neither iron fertilization nor the sinking of brines alone can account for the evolution of CO2, and that only the combination of the sinking of brines and interactive diffusion can simultaneously simulate the increase in deep Southern Ocean δ13C. The scenario that agrees best with the data takes into account all mechanisms and favours a rapid cessation of the sinking of brines around 18 000 years ago, when the Antarctic ice sheet extent was at its maximum. In this scenario, we make the hypothesis that sea ice formation was then shifted to the open ocean where the salty water is quickly mixed with fresher water, which prevents deep sinking of salty water and therefore breaks down the deep stratification and releases carbon from the abyss. Based on this scenario, it is possible to simulate both the amplitude and timing of the long-term CO2 increase during the last termination in agreement with ice core data. The atmospheric δ13C appears to be highly sensitive to changes in the terrestrial biosphere, underlining the need to better constrain the vegetation evolution during the termination.
Resumo:
Sea ice friction models are necessary to predict the nature of interactions between sea ice floes. These interactions are of interest on a range of scales, for example, to predict loads on engineering structures in icy waters or to understand the basin-scale motion of sea ice. Many models use Amonton's friction law due to its simplicity. More advanced models allow for hydrodynamic lubrication and refreezing of asperities; however, modeling these processes leads to greatly increased complexity. In this paper we propose, by analogy with rock physics, that a rate- and state-dependent friction law allows us to incorporate memory (and thus the effects of lubrication and bonding) into ice friction models without a great increase in complexity. We support this proposal with experimental data on both the laboratory (∼0.1 m) and ice tank (∼1 m) scale. These experiments show that the effects of static contact under normal load can be incorporated into a friction model. We find the parameters for a first-order rate and state model to be A = 0.310, B = 0.382, and μ0 = 0.872. Such a model then allows us to make predictions about the nature of memory effects in moving ice-ice contacts.
Resumo:
Earth system models (ESMs) are increasing in complexity by incorporating more processes than their predecessors, making them potentially important tools for studying the evolution of climate and associated biogeochemical cycles. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes. For example, coupled climate–carbon cycle models that represent land-use change simulate total land carbon stores at 2100 that vary by as much as 600 Pg C, given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous methods of model evaluation. Here we assess the state-of-the-art in evaluation of ESMs, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeodata and (ii) metrics for evaluation. We note that the practice of averaging results from many models is unreliable and no substitute for proper evaluation of individual models. We discuss a range of strategies, such as the inclusion of pre-calibration, combined process- and system-level evaluation, and the use of emergent constraints, that can contribute to the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but also presents a challenge. Improved knowledge of data uncertainties is still necessary to move the field of ESM evaluation away from a "beauty contest" towards the development of useful constraints on model outcomes.
Resumo:
A pyridyl-functionalized diiron dithiolate complex, [μ-(4-pyCH2−NMI-S2)Fe2(CO)6] (3, py = pyridine(ligand), NMI = naphthalene monoimide) was synthesized and fully characterized. In the presence of zinc tetraphenylporphyrin (ZnTPP), a self-assembled 3·ZnTPP complex was readily formed in CH2Cl2 by the coordination of the pyridyl nitrogen to the porphyrin zinc center. Ultrafast photoinduced electron transfer from excited ZnTPP to complex 3 in the supramolecular assembly was observed in real time by monitoring the ν(CO) and ν(CO)NMI spectral changes with femtosecond time-resolved infrared (TRIR) spectroscopy. We have confirmed that photoinduced charge separation produced the monoreduced species by comparing the time-resolved IR spectra with the conventional IR spectra of 3•− generated by reversible electrochemical reduction. The lifetimes for the charge separation and charge recombination processes were found to be τCS = 40 ± 3 ps and τCR = 205 ± 14 ps, respectively. The charge recombination is much slower than that in an analogous covalent complex, demonstrating the potential of a supramolecular approach to extend the lifetime of the chargeseparated state in photocatalytic complexes. The observed vibrational frequency shifts provide a very sensitive probe of the delocalization of the electron-spin density over the different parts of the Fe2S2 complex. The TR and spectro-electrochemical IR spectra, electron paramagnetic resonance spectra, and density functional theory calculations all show that the spin density in 3•− is delocalized over the diiron core and the NMI bridge. This delocalization explains why the complex exhibits low catalytic dihydrogen production even though it features a very efficient photoinduced electron transfer. The ultrafast porphyrin-to-NMIS2−Fe2(CO)6 photoinduced electron transfer is the first reported example of a supramolecular Fe2S2-hydrogenase model studied by femtosecond TRIR spectroscopy. Our results show that TRIR spectroscopy is a powerful tool to investigate photoinduced electron transfer in potential dihydrogen-producing catalytic complexes, and that way to optimize their performance by rational approaches.
Resumo:
When studying hydrological processes with a numerical model, global sensitivity analysis (GSA) is essential if one is to understand the impact of model parameters and model formulation on results. However, different definitions of sensitivity can lead to a difference in the ranking of importance of the different model factors. Here we combine a fuzzy performance function with different methods of calculating global sensitivity to perform a multi-method global sensitivity analysis (MMGSA). We use an application of a finite element subsurface flow model (ESTEL-2D) on a flood inundation event on a floodplain of the River Severn to illustrate this new methodology. We demonstrate the utility of the method for model understanding and show how the prediction of state variables, such as Darcian velocity vectors, can be affected by such a MMGSA. This paper is a first attempt to use GSA with a numerically intensive hydrological model.
Resumo:
Concepts of time-dependent flow in the coupled solar wind-magnetosphere-ionosphere system are discussed and compared with the frequently-adopted steady-state paradigm. Flows are viewed as resulting from departures of the system from equilibrium excited by dayside and nightside reconnection processes, with the flows then taking the system back towards a new equilibrium configuration. The response of the system to reconnection impulses, continuous but unbalanced reconnection and balanced steady-state reconnection are discussed in these terms. It is emphasized that in the time-dependent case the ionospheric and interplanetary electric fields are generally inductively decoupled from each other; a simple mapping of the interplanetary electric field along equipotential field lines into the ionosphere occurs only in the electrostatic steady-state case.
Resumo:
The state-resolved reactivity of CH4 in its totally symmetric C-H stretch vibration (�1) has been measured on a Ni(100) surface. Methane molecules were accelerated to kinetic energies of 49 and 63:5 kJ=mol in a molecular beam and vibrationally excited to �1 by stimulated Raman pumping before surface impact at normal incidence. The reactivity of the symmetric-stretch excited CH4 is about an order of magnitude higher than that of methane excited to the antisymmetric stretch (�3) reported by Juurlink et al. [Phys. Rev. Lett. 83, 868 (1999)] and is similar to that we have previously observed for the excitation of the first overtone (2�3). The difference between the state-resolved reactivity for �1 and �3 is consistent with predictions of a vibrationally adiabatic model of the methane reaction dynamics and indicates that statistical models cannot correctly describe the chemisorption of CH4 on nickel.
Resumo:
The theory of wave–mean flow interaction requires a partition of the atmospheric flow into a notional background state and perturbations to it. Here, a background state, known as the Modified Lagrangian Mean (MLM), is defined as the zonally symmetric state obtained by requiring that every potential vorticity (PV) contour lying within an isentropic layer encloses the same mass and circulation as in the full flow. For adiabatic and frictionless flow, these two integral properties are time-invariant and the MLM state is a steady solution of the primitive equations. The time dependence in the adiabatic flow is put into the perturbations, which can be described by a wave-activity conservation law that is exact even at large amplitude. Furthermore, the effects of non-conservative processes on wave activity can be calculated from the conservation law. A new method to calculate the MLM state is introduced, where the position of the lower boundary is obtained as part of the solution. The results are illustrated using Northern Hemisphere ERA-Interim data. The MLM state evolves slowly, implying that the net non-conservative effects are weak. Although ‘adiabatic eddy fluxes’ cannot affect the MLM state, the effects of Rossby-wave breaking, PV filamentation and subsequent dissipation result in sharpening of the polar vortex edge and meridional shifts in the MLM zonal flow, both at tropopause level and on the winter stratospheric vortex. The rate of downward migration of wave activity during stratospheric sudden warmings is shown to be given by the vertical scale associated with polar vortex tilt divided by the time-scale for wave dissipation estimated from the wave-activity conservation law. Aspects of troposphere–stratosphere interaction are discussed. The new framework is suitable to examine the climate and its interactions with disturbances, such as midlatitude storm tracks, and makes a clean partition between adiabatic and non-conservative processes.