51 resultados para EX VIVO HIPPOCAMPUS IMAGING
Resumo:
Pre-eclampsia (PE) complicates around 3% of all pregnancies and is one of the most common causes of maternal mortality worldwide. The pathophysiology of PE remains unclear however its underlying cause originates from the placenta and manifests as raised blood pressure, proteinuria, vascular or systemic inflammation and hypercoagulation in the mother. Women who develop PE are also at significantly higher risk of subsequently developing cardiovascular (CV) disease. In PE, the failing endoplasmic reticulum, oxidative and inflammatory stressed syncytiotrophoblast layer of the placenta sheds increased numbers of syncytiotrophoblast extracellular vesicles (STBEV) into the maternal circulation. Platelet reactivity, size and concentration are also known to be altered in some women who develop PE, although the underlying reasons for this have not been determined. In this study we show that STBEV from disease free placenta isolated ex vivo by dual placental perfusion associate rapidly with platelets. We provide evidence that STBEV isolated from normal placentas cause platelet activation and that this is increased with STBEV from PE pregnancies. Furthermore, treatment of platelets with aspirin, currently prescribed for women at high risk of PE to reduce platelet aggregation, also inhibits STBEV-induced reversible aggregation of washed platelets. Increased platelet reactivity as a result of exposure to PE placenta derived STBEVs correlates with increased thrombotic risk associated with PE. These observations establish a possible direct link between the clotting disturbances of PE and dysfunction of the placenta, as well as the known increased risk of thromboembolism associated with this condition.
Resumo:
Cardiac myocyte hypertrophy involves changes in cell structure and alterations in protein expression regulated at both the transcriptional and translational levels. Hypertrophic G protein-coupled receptor (GPCR) agonists such as endothelin-(ET-1) and phenylephrine stimulate a number of protein kinase cascades in the heart. Mitogen-activated protein kinase (MAPK) cascades stimulated include the extracellularly regulated kinase cascade, the stress-activated protein kinase/c-Jun N-terminal kinase cascade, and the p38 MAPK cascade. All 3 pathways have been implicated in hypertrophy, but recent ex vivo evidence also suggests that there may be additional effects on cell survival. ET-1 and phenylephrine also stimulate the protein kinase B pathway, and this may be involved in the regulation of protein synthesis by these agonists. Thus, protein kinase-mediated signaling may be important in the regulation of the development of myocyte hypertrophy.
Resumo:
The right ventricle has become an increasing focus in cardiovascular research. In this position paper, we give a brief overview of the specific pathophysiological features of the right ventricle, with particular emphasis on functional and molecular modifications as well as therapeutic strategies in chronic overload, highlighting the differences from the left ventricle. Importantly, we put together recommendations on promising topics of research in the field, experimental study design, and functional evaluation of the right ventricle in experimental models, from non-invasive methodologies to haemodynamic evaluation and ex vivo set-ups.
Resumo:
BACKGROUND:The Salmonella enterica serovar Derby is frequently isolated from pigs and turkeys whereas serovar Mbandaka is frequently isolated from cattle, chickens and animal feed in the UK. Through comparative genomics, phenomics and mutant construction we previously suggested possible mechanistic reasons why these serovars demonstrate apparently distinct host ranges. Here, we investigate the genetic and phenotypic diversity of these two serovars in the UK. We produce a phylogenetic reconstruction and perform several biochemical assays on isolates of S. Derby and S. Mbandaka acquired from sites across the UK between the years 2000 and 2010. RESULTS:We show that UK isolates of S. Mbandaka comprise of one clonal lineage which is adapted to proficient utilisation of metabolites found in soya beans under ambient conditions. We also show that this clonal lineage forms a biofilm at 25 °C, suggesting that this serovar maybe well adapted to survival ex vivo, growing in animal feed. Conversely, we show that S. Derby is made of two distinct lineages, L1 and L2. These lineages differ genotypically and phenotypically, being divided by the presence and absence of SPI-23 and the ability to more proficiently invade porcine jejunum derived cell line IPEC-J2. CONCLUSION:The results of this study lend support to the hypothesis that the differences in host ranges of S. Derby and S. Mbandaka are adaptations to pathogenesis, environmental persistence, as well as utilisation of metabolites abundant in their respective host environments.
Resumo:
Objective/Background: Traditionally, sclerotherapy has been thought to work by the cytotoxic effect of the sclerosant upon the endothelium alone. However, studies have shown that sclerotherapy is more successful in smaller veins than in larger veins. This could be explained by the penetration of the sclerosant, or its effect, into the media. This study aimed to investigate intimal and medial damage profiles after sclerosant treatment. Methods: Fresh human varicose veins were treated ex vivo with either 1% or 3% sodium tetradecyl sulphate (STS) for 1 or 10 minutes. The effect of the sclerosant on the vein wall was investigated by immunofluorescent labelling of transverse vein sections using markers for endothelium (CD31), smooth muscle (a-actin), apoptosis (p53) and inflammation (intercellular adhesion molecule-1 [ICAM-1]). Polidocanol (POL; 3%) treatment at 10 minutes was similarly investigated. Results: Endothelial cell death was concentration- and time-dependent for STS but incomplete for both sclerosants. Time, but not concentration, significantly affected cell death (p > .001). A 40% and 30% maximum reduction was observed for STS and POL, respectively. Destruction of 20e30% of smooth muscle cells was found up to 250 mm from the lumen after 3% STS treatment for 10 minutes. POL treatment for 10 minutes showed inferior destruction of medial cells. Following STS treatment and 24-hour tissue culture, p53 and ICAM-1 were upregulated to a depth of around 300 mm. This effect was not observed with POL. Conclusion: Inflammatory and apoptotic markers show the same distribution as medial cell death, implying that sclerotherapy with STS works by inducing apoptosis in the vein wall rather than having an effect restricted to the endothelium. Incomplete loss of endothelial cells and penetration of the sclerosant effect up to 250 mm into the media suggest that medial damage is crucial to the success of sclerotherapy and may explain why it is less effective in larger veins.
Resumo:
The leaves of the olive plant (Olea europaea) are rich in polyphenols, of which oleuropein and hydroxytyrosol (HT) are most characteristic. Such polyphenols have been demonstrated to favourably modify a variety of cardiovascular risk factors. The aim of the present intervention was to investigate the influence of olive leaf extract (OLE) on vascular function and inflammation in a postprandial setting and to link physiological outcomes with absorbed phenolics. A randomised, double-blind, placebo-controlled, cross-over, acute intervention trial was conducted with eighteen healthy volunteers (nine male, nine female), who consumed either OLE (51 mg oleuropein; 10mg HT), or a matched control (separated by a 4-week wash out) on a single occasion. Vascular function was measured by digital volume pulse (DVP), while blood collected at baseline, 1, 3 and 6 h was cultured for 24 h in the presence of lipopolysaccharide in order to investigate effects on cytokine production. Urine was analysed for phenolic metabolites by HPLC. DVP-stiffness index and ex vivo IL-8 production were significantly reduced (P < 0.05) after consumption of OLE compared to the control. These effects were accompanied by the excretion of several phenolic metabolites, namely HT and oleuropein derivatives, which peaked in urine after 8-24 h. The present study provides the first evidence that OLE positively modulates vascular function and IL-8 production in vivo, adding to growing evidence that olive phenolics could be beneficial for health.