133 resultados para EDGE PLASMA
Resumo:
Understanding the onset of coronal mass ejections (CMEs) is surely one of the holy grails of solar physics today. Inspection of data from the Heliospheric Imagers (HI), which are part of the SECCHI instrument suite aboard the two NASA STEREO spacecraft, appears to have revealed pre-eruption signatures which may provide valuable evidence for identifying the CME onset mechanism. Specifically, an examination of the HI images has revealed narrow rays comprised of a series of outward-propagating plasma blobs apparently forming near the edge of the streamer belt prior to many CME eruptions. In this pilot study, we inspect a limited dataset to explore the significance of this phenomenon, which we have termed a pre-CME ‘fuse’. Although, the enhanced expulsion of blobs may be consistent with an increase in the release of outward-propagating blobs from the streamers themselves, it could also be interpreted as evidence for interchange reconnection in the period leading to a CME onset. Indeed, it is argued that the latter could even have implications for the end-of-life of CMEs. Thus, the presence of these pre-CME fuses provides evidence that the CME onset mechanism is either related to streamer reconnection processes or the reconnection between closed field lines in the streamer belt and adjacent, open field lines. We investigate the nature of these fuses, including their timing and location with respect to CME launch sites, as well as their speed and topology.
Resumo:
In a comparative study of pre- and postmenopausal women with benign and malignant breast disease, a number of differences were observed in circulating plasma prolactin and lipid concentrations. Plasma lipids, phospholipids, triglycerides, cholesterol and free fatty acids were all higher in blood obtained from breast cancer patients prior to surgery. HDL-Cholesterol levels were significantly lower in these patients. These differences remained when the patient groups were sub-divided according to menopausal status. Plasma prolactin concentrations were also found to be higher in cancer compared with non-cancer patients, this effect being more marked in premenopausal than in postmenopausal patients. Premenopausal patients with invasive or poorly differentiated disease had significantly higher prolactin levels than those with non-invasive disease. No correlations were found between plasma prolactin and any of the lipid fractions.
Resumo:
Background FFAR1 receptor is a long chain fatty acid G-protein coupled receptor which is expressed widely, but found in high density in the pancreas and central nervous system. It has been suggested that FFAR1 may play a role in insulin sensitivity, lipotoxicity and is associated with type 2 diabetes. Here we investigate the effect of three common SNPs of FFAR1 (rs2301151; rs16970264; rs1573611) on pancreatic function, BMI, body composition and plasma lipids. Methodology/Principal Findings For this enquiry we used the baseline RISCK data, which provides a cohort of overweight subjects at increased cardiometabolic risk with detailed phenotyping. The key findings were SNPs of the FFAR1 gene region were associated with differences in body composition and lipids, and the effects of the 3 SNPs combined were cumulative on BMI, body composition and total cholesterol. The effects on BMI and body fat were predominantly mediated by rs1573611 (1.06 kg/m2 higher (P = 0.009) BMI and 1.53% higher (P = 0.002) body fat per C allele). Differences in plasma lipids were also associated with the BMI-increasing allele of rs2301151 including higher total cholesterol (0.2 mmol/L per G allele, P = 0.01) and with the variant A allele of rs16970264 associated with lower total (0.3 mmol/L, P = 0.02) and LDL (0.2 mmol/L, P<0.05) cholesterol, but also with lower HDL-cholesterol (0.09 mmol/L, P<0.05) although the difference was not apparent when controlling for multiple testing. There were no statistically significant effects of the three SNPs on insulin sensitivity or beta cell function. However accumulated risk allele showed a lower beta cell function on increasing plasma fatty acids with a carbon chain greater than six. Conclusions/Significance Differences in body composition and lipids associated with common SNPs in the FFAR1 gene were apparently not mediated by changes in insulin sensitivity or beta-cell function.
Resumo:
Objective: SNPs identified from genome wide association studies associate with lipid risk markers of cardiovascular disease. This study investigated whether these SNPs altered the plasma lipid response to diet in the ‘RISCK’ study cohort. Methods: Participants (n = 490) from a dietary intervention to lower saturated fat by replacement with carbohydrate or monounsaturated fat, were genotyped for 39 lipid-associated SNPs. The association of each individual SNP, and of the SNPs combined (using genetic predisposition scores), with plasma lipid concentrations was assessed at baseline, and on change in response to 24 weeks on diets. Results: The associations between SNPs and lipid concentrations were directionally consistent with previous findings. The genetic predisposition scores were associated with higher baseline concentrations of plasma total(P = 0.02) and LDL (P = 0.002) cholesterol, triglycerides (P = 0.001) and apolipoprotein B (P = 0.004), and with lower baseline concentrations of HDL cholesterol (P < 0.001) and apolipoprotein A-I (P < 0.001). None of the SNPs showed significant association with the reduction of plasma lipids in response to the dietary interventions and there was no evidence of diet-gene interactions. Conclusion: Results from this exploratory study have shown that increased genetic predisposition was associated with an unfavourable plasma lipid profile at baseline, but did not influence the improvement in lipid profiles by the low-saturated-fat diets.
Resumo:
Background: Calpain-10 protein (intracellular Ca2+-dependent cysteine protease) may play a role in glucose metabolism, pancreatic β cell function, and regulation of thermogenesis. Several CAPN10 polymorphic sites have been studied for their potential use as risk markers for type 2 diabetes and the metabolic syndrome (MetS). Fatty acids are key metabolic regulators that may interact with genetic factors and influence glucose metabolism. Objective: The objective was to examine whether the genetic variability at the CAPN10 gene locus is associated with the degree of insulin resistance and plasma fatty acid concentrations in subjects with MetS. Design: The insulin sensitivity index, glucose effectiveness, insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)], insulin secretion (disposition index, acute insulin response, and HOMA of β cell function), plasma fatty acid composition, and 5 CAPN10 single nucleotide polymorphisms (SNPs) were determined in a cross-sectional analysis of 452 subjects with MetS participating in the LIPGENE dietary intervention cohort. Results: The rs2953171 SNP interacted with plasma total saturated fatty acid (SFA) concentrations, which were significantly associated with insulin sensitivity (P < 0.031 for fasting insulin, P < 0.028 for HOMA-IR, and P < 0.012 for glucose effectiveness). The G/G genotype was associated with lower fasting insulin concentrations, lower HOMA-IR, and higher glucose effectiveness in subjects with low SFA concentrations (below the median) than in subjects with the minor A allele (G/A and A/A). In contrast, subjects with the G/G allele with the highest SFA concentrations (above the median) had higher fasting insulin and HOMA-IR values and lower glucose effectiveness than did subjects with the A allele. Conclusion: The rs2953171 polymorphism at the CAPN10 gene locus may influence insulin sensitivity by interacting with the plasma fatty acid composition in subjects with MetS. This trial was registered at clinicaltrials.gov as NCT00429195.
Resumo:
The PPARγ2 gene SNP Pro12Ala has shown variable association with metabolic syndrome traits in healthy subjects. We investigated the effect of interaction between genotype and the ratio of polyunsaturated:saturated (P:S) fatty acid intake on plasma lipids in 367 White subjects aged 30-70 y at increased cardiometabolic risk, in the RISCK study. Interaction was determined after habitual diet at recruitment, at baseline after a 4-week high-SFA (HS) diet and after 24-week reference (HS), high-MUFA (HM) and low-fat (LF) diets. At recruitment, there were no significant associations between genotype and plasma lipids, however, P:S x genotype interaction influenced plasma total cholesterol (TC) (P=0.02), LDL-cholesterol (LDL-C) (P=0.002) and triglyceride (TG) (P=0.02) concentrations. At P:S ratio ≤0.33, mean TC and LDL-C concentrations in Ala12 allele carriers were significantly higher than in non-carriers (respectively P=0.003; P=0.0001). Significant trends in reduction of plasma TC (P=0.02) and TG (P=0.002) concentrations occurred with increasing P:S (respectively ≤0.33 to >0.65 and 0.34 to >0.65) in Ala12 allele carriers. There were no significant differences between carriers and non-carriers after the 4-week HS diet or 24-week interventions. Plasma TC and TG concentrations in PPARG Ala12 allele carriers decrease as P:S increases, but are not dependent on a reduction in SFA intake.
Resumo:
This article provides the first substantial survey of early archaeological research in Egypt’s Dakhleh Oasis. In addition to providing a much-needed survey of research, this study embeds Dakhleh’s regional research history within a broader archaeological research framework. Moreover, it explores the impact of contemporaneous historical events in Egypt and Europe upon the development of archaeology in Dakhleh. This contextualised approach allows us to trace influences upon past research trends and their impacts upon current research and approaches, as well as suggest directions for future research.
Resumo:
A description is given of the global atmospheric electric circuit operating between the Earth’s surface and the ionosphere. Attention is drawn to the huge range of horizontal and vertical spatial scales, ranging from 10−9 m to 1012 m, concerned with the many important processes at work. A similarly enormous range of time scales is involved from 10−6 s to 109 s, in the physical effects and different phenomena that need to be considered. The current flowing in the global circuit is generated by disturbed weather such as thunderstorms and electrified rain/shower clouds, mostly occurring over the Earth’s land surface. The profile of electrical conductivity up through the atmosphere, determined mainly by galactic cosmic ray ionization, is a crucial parameter of the circuit. Model simulation results on the variation of the ionospheric potential, ∼250 kV positive with respect to the Earth’s potential, following lightning discharges and sprites are summarized. Experimental results comparing global circuit variations with the neutron rate recorded at Climax, Colorado, are then discussed. Within the return (load) part of the circuit in the fair weather regions remote from the generators, charge layers exist on the upper and lower edges of extensive layer clouds; new experimental evidence for these charge layers is also reviewed. Finally, some directions for future research in the subject are suggested.