73 resultados para Distributed artificial intelligence


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper develops and tests formulas for representing playing strength at chess by the quality of moves played, rather than by the results of games. Intrinsic quality is estimated via evaluations given by computer chess programs run to high depth, ideally so that their playing strength is sufficiently far ahead of the best human players as to be a `relatively omniscient' guide. Several formulas, each having intrinsic skill parameters s for `sensitivity' and c for `consistency', are argued theoretically and tested by regression on large sets of tournament games played by humans of varying strength as measured by the internationally standard Elo rating system. This establishes a correspondence between Elo rating and the parameters. A smooth correspondence is shown between statistical results and the century points on the Elo scale, and ratings are shown to have stayed quite constant over time. That is, there has been little or no `rating inflation'. The theory and empirical results are transferable to other rational-choice settings in which the alternatives have well-defined utilities, but in which complexity and bounded information constrain the perception of the utility values.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Load forecasting is an important task in the management of a power utility. The most recent developments in forecasting involve the use of artificial intelligence techniques, which offer powerful modelling capabilities. This paper discusses these techniques and provides a review of their application to load forecasting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the advance of information technology capabilities, and the importance of human computer interfaces within society there has been a significant increase in research activity within the field of human computer interaction (HCI). This paper summarizes some of the work undertaken to date, paying particular attention to methods applicable to on-line control and monitoring systems such as those employed by The National Grid Company plc.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the notion of Context-based Activity Design (CoBAD) that represents context with its dynamic changes and normative activities in an interactive system design. The development of CoBAD requires an appropriate context ontology model and inference mechanisms. The incorporation of norms and information field theory into Context State Transition Model, and the implementation of new conflict resolution strategies based on the specific situation are discussed. A demonstration of CoBAD using a human agent scenario in a smart home is also presented. Finally, a method of treating conflicting norms in multiple information fields is proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inducing rules from very large datasets is one of the most challenging areas in data mining. Several approaches exist to scaling up classification rule induction to large datasets, namely data reduction and the parallelisation of classification rule induction algorithms. In the area of parallelisation of classification rule induction algorithms most of the work has been concentrated on the Top Down Induction of Decision Trees (TDIDT), also known as the ‘divide and conquer’ approach. However powerful alternative algorithms exist that induce modular rules. Most of these alternative algorithms follow the ‘separate and conquer’ approach of inducing rules, but very little work has been done to make the ‘separate and conquer’ approach scale better on large training data. This paper examines the potential of the recently developed blackboard based J-PMCRI methodology for parallelising modular classification rule induction algorithms that follow the ‘separate and conquer’ approach. A concrete implementation of the methodology is evaluated empirically on very large datasets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Generally classifiers tend to overfit if there is noise in the training data or there are missing values. Ensemble learning methods are often used to improve a classifier's classification accuracy. Most ensemble learning approaches aim to improve the classification accuracy of decision trees. However, alternative classifiers to decision trees exist. The recently developed Random Prism ensemble learner for classification aims to improve an alternative classification rule induction approach, the Prism family of algorithms, which addresses some of the limitations of decision trees. However, Random Prism suffers like any ensemble learner from a high computational overhead due to replication of the data and the induction of multiple base classifiers. Hence even modest sized datasets may impose a computational challenge to ensemble learners such as Random Prism. Parallelism is often used to scale up algorithms to deal with large datasets. This paper investigates parallelisation for Random Prism, implements a prototype and evaluates it empirically using a Hadoop computing cluster.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Twitter network has been labelled the most commonly used microblogging application around today. With about 500 million estimated registered users as of June, 2012, Twitter has become a credible medium of sentiment/opinion expression. It is also a notable medium for information dissemination; including breaking news on diverse issues since it was launched in 2007. Many organisations, individuals and even government bodies follow activities on the network in order to obtain knowledge on how their audience reacts to tweets that affect them. We can use postings on Twitter (known as tweets) to analyse patterns associated with events by detecting the dynamics of the tweets. A common way of labelling a tweet is by including a number of hashtags that describe its contents. Association Rule Mining can find the likelihood of co-occurrence of hashtags. In this paper, we propose the use of temporal Association Rule Mining to detect rule dynamics, and consequently dynamics of tweets. We coined our methodology Transaction-based Rule Change Mining (TRCM). A number of patterns are identifiable in these rule dynamics including, new rules, emerging rules, unexpected rules and ?dead' rules. Also the linkage between the different types of rule dynamics is investigated experimentally in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Planning is one of the key problems for autonomous vehicles operating in road scenarios. Present planning algorithms operate with the assumption that traffic is organised in predefined speed lanes, which makes it impossible to allow autonomous vehicles in countries with unorganised traffic. Unorganised traffic is though capable of higher traffic bandwidths when constituting vehicles vary in their speed capabilities and sizes. Diverse vehicles in an unorganised exhibit unique driving behaviours which are analysed in this paper by a simulation study. The aim of the work reported here is to create a planning algorithm for mixed traffic consisting of both autonomous and non-autonomous vehicles without any inter-vehicle communication. The awareness (e.g. vision) of every vehicle is restricted to nearby vehicles only and a straight infinite road is assumed for decision making regarding navigation in the presence of multiple vehicles. Exhibited behaviours include obstacle avoidance, overtaking, giving way for vehicles to overtake from behind, vehicle following, adjusting the lateral lane position and so on. A conflict of plans is a major issue which will almost certainly arise in the absence of inter-vehicle communication. Hence each vehicle needs to continuously track other vehicles and rectify plans whenever a collision seems likely. Further it is observed here that driver aggression plays a vital role in overall traffic dynamics, hence this has also been factored in accordingly. This work is hence a step forward towards achieving autonomous vehicles in unorganised traffic, while similar effort would be required for planning problems such as intersections, mergers, diversions and other modules like localisation.