55 resultados para Dissipation of pesticides
Resumo:
Recent concern over global pollinator declines has led to considerable research on the effects of pesticides on bees1, 2, 3, 4, 5. Although pesticides are typically not encountered at lethal levels in the field, there is growing evidence indicating that exposure to field-realistic levels can have sublethal effects on bees, affecting their foraging behaviour1, 6, 7, homing ability8, 9 and reproductive success2, 5. Bees are essential for the pollination of a wide variety of crops and the majority of wild flowering plants10, 11, 12, but until now research on pesticide effects has been limited to direct effects on bees themselves and not on the pollination services they provide. Here we show the first evidence to our knowledge that pesticide exposure can reduce the pollination services bumblebees deliver to apples, a crop of global economic importance. Bumblebee colonies exposed to a neonicotinoid pesticide provided lower visitation rates to apple trees and collected pollen less often. Most importantly, these pesticide-exposed colonies produced apples containing fewer seeds, demonstrating a reduced delivery of pollination services. Our results also indicate that reduced pollination service delivery is not due to pesticide-induced changes in individual bee behaviour, but most likely due to effects at the colony level. These findings show that pesticide exposure can impair the ability of bees to provide pollination services, with important implications for both the sustained delivery of stable crop yields and the functioning of natural ecosystems.
Resumo:
This paper describes some of the results of a detailed farm-level survey of 32 small-scale cotton farmers in the Makhathini Flats region of South Africa. The aim was to assess and measure some of the impacts (especially in terms of savings in pesticide and labour as well as benefits to human health) attributable to the use of insect-tolerant Bt cotton. The study reveals a direct cost benefit for Bt growers of SAR416 ($51) per hectare per season due to a reduction in the number of insecticide applications. Cost savings emerged in the form of lower requirements for pesticide, but also important were reduced requirements for water and labour. The reduction in the number of sprays was particularly beneficial to women who do some spraying and children who collect water and assist in spraying. The increasing adoption rate of Bt cotton appears to have a health benefit measured in terms of reported rates of accidental insecticide poisoning. These appear to be declining as the uptake of Bt cotton increases. However, the understanding of refugia and their management by local farmers are deficient and need improving. Finally, Bt cotton growers emerge as more resilient in absorbing price fluctuations.
Resumo:
This paper describes some of the results of a detailed farm-level survey of 32 small-scale cotton farmers in the Makhathini Flats region of South Africa. The aim was to assess and measure some of the impacts (especially in terms of savings in pesticide and labour as well as benefits to human health) attributable to the use of insect-tolerant Bt cotton. The study reveals a direct cost benefit for Bt growers of SAR416 ($51) per hectare per season due to a reduction in the number of insecticide applications. Cost savings emerged in the form of lower requirements for pesticide, but also important were reduced requirements for water and labour. The reduction in the number of sprays was particularly beneficial to women who do some spraying and children who collect water and assist in spraying. The increasing adoption rate of Bt cotton appears to have a health benefit measured in terms of reported rates of accidental insecticide poisoning. These appear to be declining as the uptake of Bt cotton increases. However, the understanding of refugia and their management by local farmers are deficient and need improving. Finally, Bt cotton growers emerge as more resilient in absorbing price fluctuations.
Resumo:
1. We tested three pesticides used for field manipulations of herbivory for direct phytoactive effects on the germination and growth of 14 herbaceous plant species selected to provide a range of life-history strategies and functional groups. 2. We report three companion experiments: (A) Two insecticides, chlorpyrifos (granular soil insecticide) and dimethoate (foliar spray), were applied in fully-factorial combination to pot-germinated individuals of 12 species. (B) The same fully-factorial design was used to test for direct effects on the germination of four herbaceous legumes. (C) The molluscicide, metaldehyde, was tested for direct effects on the germination and growth of six plant species. 3. The insecticides had few significant effects on growth and germination. Dimethoate acted only on growth stimulating Anisantha sterilis, Sonchus asper and Stellaria graminea. In contrast, chlorpyrifos acted on germination increasing the germination of Trifolium dubium and Trifolium pratense. There was also a significant interactive effect of chlorpyrifos and dimethoate on the germination of T pratense. However, all. effects were relatively small in magnitude and explanatory power. The molluscicide had no significant effect on plant germination or growth. 4. The small number and size of direct effects of the pesticides on plant performance is encouraging for the use of these pesticides in manipulative experiments on herbivory, especially for the molluscicide. However, a smatt number of direct (positive) effects of the insecticides on some plant species need to be taken into account when interpreting field manipulations of herbivory with these compounds, and emphasises the importance of conducting tests for direct phyto-active effects. (C) 2004 Elsevier GmbH. All rights reserved.
Resumo:
A model for estimating the turbulent kinetic energy dissipation rate in the oceanic boundary layer, based on insights from rapid-distortion theory, is presented and tested. This model provides a possible explanation for the very high dissipation levels found by numerous authors near the surface. It is conceived that turbulence, injected into the water by breaking waves, is subsequently amplified due to its distortion by the mean shear of the wind-induced current and straining by the Stokes drift of surface waves. The partition of the turbulent shear stress into a shear-induced part and a wave-induced part is taken into account. In this picture, dissipation enhancement results from the same mechanism responsible for Langmuir circulations. Apart from a dimensionless depth and an eddy turn-over time, the dimensionless dissipation rate depends on the wave slope and wave age, which may be encapsulated in the turbulent Langmuir number La_t. For large La_t, or any Lat but large depth, the dissipation rate tends to the usual surface layer scaling, whereas when Lat is small, it is strongly enhanced near the surface, growing asymptotically as ɛ ∝ La_t^{-2} when La_t → 0. Results from this model are compared with observations from the WAVES and SWADE data sets, assuming that this is the dominant dissipation mechanism acting in the ocean surface layer and statistical measures of the corresponding fit indicate a substantial improvement over previous theoretical models. Comparisons are also carried out against more recent measurements, showing good order-of-magnitude agreement, even when shallow-water effects are important.
Resumo:
We study two-dimensional (2D) turbulence in a doubly periodic domain driven by a monoscale-like forcing and damped by various dissipation mechanisms of the form νμ(−Δ)μ. By “monoscale-like” we mean that the forcing is applied over a finite range of wavenumbers kmin≤k≤kmax, and that the ratio of enstrophy injection η≥0 to energy injection ε≥0 is bounded by kmin2ε≤η≤kmax2ε. Such a forcing is frequently considered in theoretical and numerical studies of 2D turbulence. It is shown that for μ≥0 the asymptotic behaviour satisfies ∥u∥12≤kmax2∥u∥2, where ∥u∥2 and ∥u∥12 are the energy and enstrophy, respectively. If the condition of monoscale-like forcing holds only in a time-mean sense, then the inequality holds in the time mean. It is also shown that for Navier–Stokes turbulence (μ=1), the time-mean enstrophy dissipation rate is bounded from above by 2ν1kmax2. These results place strong constraints on the spectral distribution of energy and enstrophy and of their dissipation, and thereby on the existence of energy and enstrophy cascades, in such systems. In particular, the classical dual cascade picture is shown to be invalid for forced 2D Navier–Stokes turbulence (μ=1) when it is forced in this manner. Inclusion of Ekman drag (μ=0) along with molecular viscosity permits a dual cascade, but is incompatible with the log-modified −3 power law for the energy spectrum in the enstrophy-cascading inertial range. In order to achieve the latter, it is necessary to invoke an inverse viscosity (μ<0). These constraints on permissible power laws apply for any spectrally localized forcing, not just for monoscale-like forcing.
Resumo:
Callosobruchus maculatus has for years remained a serious menace in cowpea in Sub-Sahara Africa. The objective of this study was to investigate the effect of genotypic cowpea (Vigna unguiculata (L.) Walp) varieties, time and dose on C. maculatus exposed to powders of Piper guineense and Eugenia aromatica. Irrespective of duration and botanicals, bruchid reared on KDV showed the highest tolerance to both plant materials; while their counterparts from IAR48V were the most susceptible. Median lethal time (LT50) also varied according to the plant materials; with the highest in KDV reared bruchid [P. guineense: KDV (18.31), IAR48V (9.27), IFBV (13.17); E. aromatica: KDV (76.01), IAR48V (5.59), IFBV (6.49)]. There was a significant impact of cowpea variety (V), exposure time (T) and dose (D) on the tolerance of C. maculatus to both plant materials. The effect of all two-way (VxT, VxD, DxT) and three way interactions (V×T×D) on the tolerance of C. maculatus to both plant materials was also significant. Varietal effect was more pronounced in bruchids exposed to E. aromatica; while exposure time was more pronounced in bruchids exposed to P. guineense.
Resumo:
There is little consensus on how agriculture will meet future food demands sustainably. Soils and their biota play a crucial role by mediating ecosystem services that support agricultural productivity. However, a multitude of site-specific environmental factors and management practices interact to affect the ability of soil biota to perform vital functions, confounding the interpretation of results from experimental approaches. Insights can be gained through models, which integrate the physiological, biological and ecological mechanisms underpinning soil functions. We present a powerful modelling approach for predicting how agricultural management practices (pesticide applications and tillage) affect soil functioning through earthworm populations. By combining energy budgets and individual-based simulation models, and integrating key behavioural and ecological drivers, we accurately predict population responses to pesticide applications in different climatic conditions. We use the model to analyse the ecological consequences of different weed management practices. Our results demonstrate that an important link between agricultural management (herbicide applications and zero, reduced and conventional tillage) and earthworms is the maintenance of soil organic matter (SOM). We show how zero and reduced tillage practices can increase crop yields while preserving natural ecosystem functions. This demonstrates how management practices which aim to sustain agricultural productivity should account for their effects on earthworm populations, as their proliferation stimulates agricultural productivity. Synthesis and applications. Our results indicate that conventional tillage practices have longer term effects on soil biota than pesticide control, if the pesticide has a short dissipation time. The risk of earthworm populations becoming exposed to toxic pesticides will be reduced under dry soil conditions. Similarly, an increase in soil organic matter could increase the recovery rate of earthworm populations. However, effects are not necessarily additive and the impact of different management practices on earthworms depends on their timing and the prevailing environmental conditions. Our model can be used to determine which combinations of crop management practices and climatic conditions pose least overall risk to earthworm populations. Linking our model mechanistically to crop yield models would aid the optimization of crop management systems by exploring the trade-off between different ecosystem services.