62 resultados para Dietary Proteins, administration and dosage
Resumo:
The ROCO proteins are a family of large, multidomain proteins characterised by the presence of a Ras of complex proteins (ROC) domain followed by a COR, or C-terminal of ROC, domain. It has previously been shown that the ROC domain of the human ROCO protein Leucine Rich Repeat Kinase 2 (LRRK2) controls its kinase activity. Here, the ability of the ROC domain of another human ROCO protein, Death Associated Protein Kinase 1 (DAPK1), to bind GTP and control its kinase activity has been evaluated. In contrast to LRRK2, loss of GTP binding by DAPK1 does not result in loss of kinase activity, instead acting to modulate this activity. These data highlight the ROC domain of DAPK1 as a target for modifiers of this proteins function, and casts light on the role of ROC domains as intramolecular regulators in complex proteins with implications for a broad range of human diseases.
Resumo:
BACKGROUND AND PURPOSE: We have previously shown that a single 75-mg tablet of clopidogrel, taken before carotid endarterectomy, significantly reduces postoperative embolization, a marker of thromboembolic stroke. This study explores the antiplatelet effect of this submaximal dose. METHODS: Fifty-six patients on long-term aspirin (150 mg) were randomized to 75 mg clopidogrel or placebo before carotid endarterectomy. Blood samples were taken pre- and postdrug administration and at the end of surgery to measure platelet activation and adenosine diphosphate (ADP) response by flow cytometry and aggregometry. RESULTS: Surgery produced a significant rise in platelet activation in vivo as evidenced by a rise in the percentage of monocyte-platelet aggregates in patients given placebo, but this was not seen in patients receiving clopidogrel. Before surgery, clopidogrel produced a significant reduction in the platelet response to ADP; for example, with 10(-6)M ADP, 77.32+/-2.3% bound fibrinogen in placebo group compared with 67.16+/-3.1% after clopidogrel (P=0.01). This was accentuated after surgery when the percentage of platelets binding fibrinogen in response to ADP was 76.53+/-2.2% in patients given placebo and 62.84+/-3.3% in the clopidogrel group (P=0.002). Similar differences were seen over a range of ADP concentrations and by aggregometry. Platelet responsiveness before treatment was highly variable and was positively correlated with the inhibitory effect of clopidogrel; patients with the highest baseline response to ADP showed the greatest response to clopidogrel. A negative correlation was seen between the effect of clopidogrel and patients' weight (r=0.57; P=0.002). CONCLUSIONS: These results explain how a single 75-mg dose of clopidogrel produces a significant clinical impact on embolization.
Resumo:
Background and Aims Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Methods Brassica rapa ssp. trilocularis ‘R-o-18’ was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Key Results Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. Conclusions The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.
Resumo:
Introduction: Care home residents are at particular risk from medication errors, and our objective was to determine the prevalence and potential harm of prescribing, monitoring, dispensing and administration errors in UK care homes, and to identify their causes. Methods: A prospective study of a random sample of residents within a purposive sample of homes in three areas. Errors were identified by patient interview, note review, observation of practice and examination of dispensed items. Causes were understood by observation and from theoretically framed interviews with home staff, doctors and pharmacists. Potential harm from errors was assessed by expert judgement. Results: The 256 residents recruited in 55 homes were taking a mean of 8.0 medicines. One hundred and seventy-eight (69.5%) of residents had one or more errors. The mean number per resident was 1.9 errors. The mean potential harm from prescribing, monitoring, administration and dispensing errors was 2.6, 3.7, 2.1 and 2.0 (0 = no harm, 10 = death), respectively. Contributing factors from the 89 interviews included doctors who were not accessible, did not know the residents and lacked information in homes when prescribing; home staff’s high workload, lack of medicines training and drug round interruptions; lack of team work among home, practice and pharmacy; inefficient ordering systems; inaccurate medicine records and prevalence of verbal communication; and difficult to fill (and check) medication administration systems. Conclusions: That two thirds of residents were exposed to one or more medication errors is of concern. The will to improve exists, but there is a lack of overall responsibility. Action is required from all concerned.
Resumo:
Purification of intact enveloped virus particles can be useful as a first step in understanding the structure and function of both viral and host proteins that are incorporated into the virion. Purified preparations of virions can be used to address these questions using techniques such as mass spectrometry proteomics. Recent studies on the proteome of coronavirus virions have shown that in addition to the structural proteins, accessory and non-structural virus proteins and a wide variety of host cell proteins associate with virus particles. To further study the presence of virion proteins, high quality sample preparation is crucial to ensure reproducible analysis by the wide variety of methods available for proteomic analysis.
Resumo:
This study represents the first detailed multi-proxy palaeoenvironmental investigation associated with a Late Iron Age lake-dwelling site in the eastern Baltic. The main objective was to reconstruct the environmental and vegetation dynamics associated with the establishment of the lake-dwelling and land-use during the last 2,000 years. A lacustrine sediment core located adjacent to a Late Iron Age lake-dwelling, medieval castle and Post-medieval manor was sampled in Lake Āraiši. The core was dated using spheroidal fly-ash particles and radiocarbon dating, and analysed in terms of pollen, non-pollen palynomorphs, diatoms, loss-on-ignition, magnetic susceptibility and element geochemistry. Associations between pollen and other proxies were statistically tested. During ad 1–700, the vicinity of Lake Āraiši was covered by forests and human activities were only small-scale with the first appearance of cereal pollen (Triticum and Secale cereale) after ad 400. The most significant changes in vegetation and environment occurred with the establishment of the lake-dwelling around ad 780 when the immediate surroundings of the lake were cleared for agriculture, and within the lake there were increased nutrient levels. The highest accumulation rates of coprophilous fungi coincide with the occupation of the lake-dwelling from ad 780–1050, indicating that parts of the dwelling functioned as byres for livestock. The conquest of tribal lands during the crusades resulted in changes to the ownership, administration and organisation of the land, but our results indicate that the form and type of agriculture and land-use continued much as it had during the preceding Late Iron Age.
Resumo:
Improving lifestyle behaviours has considerable potential for reducing the global burden of non-communicable diseases, promoting better health across the life-course and increasing well-being. However, realising this potential will require the development, testing and implementation of much more effective behaviour change interventions than are used conventionally. Therefore, the aim of this study was to conduct a multi-centre, web-based, proof-of-principle study of personalised nutrition (PN) to determine whether providing more personalised dietary advice leads to greater improvements in eating patterns and health outcomes compared to conventional population-based advice. A total of 5,562 volunteers were screened across seven European countries; the first 1,607 participants who fulfilled the inclusion criteria were recruited into the trial. Participants were randomly assigned to one of the following intervention groups for a 6-month period: Level 0-control group-receiving conventional, non-PN advice; Level 1-receiving PN advice based on dietary intake data alone; Level 2-receiving PN advice based on dietary intake and phenotypic data; and Level 3-receiving PN advice based on dietary intake, phenotypic and genotypic data. A total of 1,607 participants had a mean age of 39.8 years (ranging from 18 to 79 years). Of these participants, 60.9 % were women and 96.7 % were from white-European background. The mean BMI for all randomised participants was 25.5 kg m(-2), and 44.8 % of the participants had a BMI ≥ 25.0 kg m(-2). Food4Me is the first large multi-centre RCT of web-based PN. The main outcomes from the Food4Me study will be submitted for publication during 2015.
Resumo:
Platelets are activated by a range of stimuli that share little or no resemblance in structure to each other or to recognized ligands, including diesel exhaust particles (DEP), small peptides [4N1-1, Champs (computed helical anti-membrane proteins), LSARLAF (Leu-Ser-Ala-Arg-Leu-Ala-Phe)], proteins (histones) and large polysaccharides (fucoidan, dextran sulfate). This miscellaneous group stimulate aggregation of human and mouse platelets through the glycoprotein VI (GPVI)-FcR γ-chain complex and/or C-type lectin-like receptor-2 (CLEC-2) as shown using platelets from mice deficient in either or both of these receptors. In addition, all of these ligands stimulate tyrosine phosphorylation in GPVI/CLEC-2-double-deficient platelets, indicating that they bind to additional surface receptors, although only in the case of dextran sulfate does this lead to activation. DEP, fucoidan and dextran sulfate, but not the other agonists, activate GPVI and CLEC-2 in transfected cell lines as shown using a sensitive reporter assay confirming a direct interaction with the two receptors. We conclude that this miscellaneous group of ligands bind to multiple proteins on the cell surface including GPVI and/or CLEC-2, inducing activation. These results have pathophysiological significance in a variety of conditions that involve exposure to activating charged/hydrophobic agents.
Resumo:
Glycoprotein VI and C-type lectin-like receptor 2 are essential platelet activating receptors in hemostasis and thrombo-inflammatory disease, which signal through a (hem)immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway. The adapter molecules Src-like adapter proteins (SLAP and SLAP2) are involved in the regulation of immune cell surface expression and signaling, but their function in platelets is unknown. In this study, we show that platelets expressed both SLAP isoforms and that overexpression of either protein in a heterologous cell line almost completely inhibited glycoprotein VI and C-type lectin-like receptor 2 signaling. In mice, single deficiency of SLAP or SLAP2 had only moderate effects on platelet function, whereas double deficiency of both adapters resulted in markedly increased signal transduction, integrin activation, granule release, aggregation, procoagulant activity, and thrombin generation in response to (hem)ITAM-coupled, but not G protein-coupled, receptor activation. In vivo, constitutive SLAP/SLAP2 knockout mice displayed accelerated occlusive arterial thrombus formation and a dramatically worsened outcome after focal cerebral ischemia. This was attributed to the absence of both adapter proteins in platelets, as demonstrated by adoptive transfer of Slap(-/-)/Slap2(-/-) platelets into wild-type mice. Our results establish SLAP and SLAP2 as critical inhibitors of platelet (hem)ITAM signaling in the setting of arterial thrombosis and ischemic stroke.
Resumo:
The glycoprotein VI (GPVI)-FcR gamma-chain complex initiates powerful activation of platelets by the subendothelial matrix proteins collagen and laminin, which are exposed following vessel damage. Initiation of platelet activation is through an immunoreceptor tyrosine-based activation motif (ITAM). C-type lectin receptor 2 (CLEC-2), following engagement by its endogenous ligand, podoplanin, also mediates powerful platelet activation through Src and Syk kinases, but regulates Syk through a novel dimerization mechanism via a single YxxL motif known as a hemITAM. This chapter compares the signaling pathways of both receptors and their role in hemostasis and thrombosis. Platelets are also increasingly implicated in processes beyond hemostasis and thrombosis. One such process is the efficient separation of the lymphatic and blood vasculatures, which is dependent on CLEC-2-mediated platelet activation.
Resumo:
The actin nodule is a novel F-actin structure present in platelets during early spreading. However, only limited detail is known regarding nodule organization and function. Here we use electron microscopy, SIM and dSTORM super-resolution, and live-cell TIRF microscopy to characterize the structural organization and signalling pathways associated with nodule formation. Nodules are composed of up to four actin-rich structures linked together by actin bundles. They are enriched in the adhesion-related proteins talin and vinculin, have a central core of tyrosine phosphorylated proteins and are depleted of integrins at the plasma membrane. Nodule formation is dependent on Wiskott-Aldrich syndrome protein (WASp) and the ARP2/3 complex. WASp(-/-) mouse blood displays impaired platelet aggregate formation at arteriolar shear rates. We propose actin nodules are platelet podosome-related structures required for platelet-platelet interaction and their absence contributes to the bleeding diathesis of Wiskott-Aldrich syndrome.
Resumo:
The glycoprotein VI (GPVI)-FcR gamma-chain complex initiates powerful activation of platelets by the subendothelial matrix proteins collagen and laminin through an immunoreceptor tyrosine-based activation motif (ITAM)-regulated signaling pathway. ITAMs are characterized by two YxxL sequences separated by 6-12 amino acids and are found associated with several classes of immunoglobulin (Ig) and C-type lectin receptors in hematopoietic cells, including Fc receptors. Cross-linking of the Ig GPVI leads to phosphorylation of two conserved tyrosines in the FcR gamma-chain ITAM by Src family tyrosine kinases, followed by binding and activation of the tandem SH2 domain-containing Syk tyrosine kinase and stimulation of a downstream signaling cascade that culminates in activation of phospholipase Cgamma2 (PLCgamma2). In contrast, the C-type lectin receptor CLEC-2 mediates powerful platelet activation through Src and Syk kinases, but regulates Syk through a novel dimerization mechanism via a single YxxL motif known as a hemITAM. CLEC-2 is a receptor for podoplanin, which is expressed at high levels in several tissues, including type 1 lung alveolar cells, lymphatic endothelial cells, kidney podocytes and some tumors, but is absent from vascular endothelial cells and platelets. In this article, we compare the mechanism of platelet activation by GPVI and CLEC-2 and consider their functional roles in hemostasis and other vascular processes, including maintenance of vascular integrity, angiogenesis and lymphogenesis.
Resumo:
Public health policies recommend a population wide decrease in the consumption of saturated fatty acids (SFA) to lower the incidence of cardiovascular and metabolic diseases. In most developed countries, milk and dairy products are the major source of SFA in the human diet. Altering milk fat composition offers the opportunity to lower the consumption of SFA without requiring a change in eating habits. Supplementing the diet of lactating cows with oilseeds, plant oils and marine lipids can be used to replace the SFA in milk fat with monounsaturated fatty acids (MUFA), and to a lesser extent, polyunsaturated fatty acids (PUFA). Due to ruminal metabolism, the decreases in milk SFA are also accompanied by increases in trans fatty acids (TFA), including conjugated isomers. The potential to lower SFA, enrich cis MUFA and PUFA, and alter the abundance and distribution of individual TFA in milk differs according to oil source, form of lipid supplement and degree of oilseed processing, and the influence of other components in the diet. The present review summarises recent evidence on changes in milk fat composition that can be achieved using dietary lipid supplements and highlights the challenges to commercial production of modified milk and dairy products. A meta-analysis on the effects of oilseeds on milk fatty acid composition is also presented.
Resumo:
The fifth edition of this best-selling textbook has been thoroughly revised to provide the most up-to-date and comprehensive coverage of the legislation, administration and management of construction contracts. It now includes comparison of working with JCT, NEC3 and FIDIC contracts, throughout. In line with new thinking in construction management research, this authoritative guide is essential reading for every construction undergraduate and is an extremely useful source of reference for practitioners.
Resumo:
OBJECTIVE: Thiol isomerases facilitate protein folding in the endoplasmic reticulum, and several of these enzymes, including protein disulfide isomerase and ERp57, are mobilized to the surface of activated platelets, where they influence platelet aggregation, blood coagulation, and thrombus formation. In this study, we examined the synthesis and trafficking of thiol isomerases in megakaryocytes, determined their subcellular localization in platelets, and identified the cellular events responsible for their movement to the platelet surface on activation. APPROACH AND RESULTS: Immunofluorescence microscopy imaging was used to localize protein disulfide isomerase and ERp57 in murine and human megakaryocytes at various developmental stages. Immunofluorescence microscopy and subcellular fractionation analysis were used to localize these proteins in platelets to a compartment distinct from known secretory vesicles that overlaps with an inner cell-surface membrane region defined by the endoplasmic/sarcoplasmic reticulum proteins calnexin and sarco/endoplasmic reticulum calcium ATPase 3. Immunofluorescence microscopy and flow cytometry were used to monitor thiol isomerase mobilization in activated platelets in the presence and absence of actin polymerization (inhibited by latrunculin) and in the presence or absence of membrane fusion mediated by Munc13-4 (absent in platelets from Unc13dJinx mice). CONCLUSIONS: Platelet-borne thiol isomerases are trafficked independently of secretory granule contents in megakaryocytes and become concentrated in a subcellular compartment near the inner surface of the platelet outer membrane corresponding to the sarco/endoplasmic reticulum of these cells. Thiol isomerases are mobilized to the surface of activated platelets via a process that requires actin polymerization but not soluble N-ethylmaleimide-sensitive fusion protein attachment receptor/Munc13-4-dependent vesicular-plasma membrane fusion.