73 resultados para Developmental genetics
Resumo:
A wild house mouse (Mus domesticus) population originally trapped near Reading, Berkshire, United Kingdom, and maintained as a colony in the laboratory, was subjected to the discriminating feeding period of the warfarin resistance test, as used by Wallace and MacSwiney (1976) and derived from the work of Rowe and Redfern (1964). Eighty percent of this heterogeneous population survived the resistance-test. A similar proportion of the population was found to survive the normally lethal dose of bromadiolone administered by oral gavage. The majority of this population of mice were classified as "warfarin-resistant" and "bromadiolone-resistant." The dose of 10mg.kg-1 of bromadiolone administered by oral gavage appeared to give good discrimination between susceptible and resistant individuals. The results of breeding tests indicate a single dominant gene that confers both "warfarin-resistance" and "bromadiolone-resistance", with complete expression of the resistance genotype in both males and females. Individual mice were classified as to genotype by back-crossing to a homozygous-susceptible strain, and resistance-testing the F1 generation. Separate strains of homozygous-resistant and homozygous-susceptible house mice are now being established.
Resumo:
Background: Deficits in reading airment (SLI), Down syndrome (DS) and autism spectrum disorders (ASD). Methods: In this review (based on a search of the ISI Web of Knowledge database to 2011), the Simple View of Reading is used as a framework for considering reading comprehension in these groups. Conclusions: There is substantial evidence for reading comprehension impairments in SLI and growing evidence that weaknesses in this domain are common in DS and ASD. Further, in these groups reading comprehension is typically more impaired than word recognition. However, there is also evidence that some children and adolescents with DS, ASD and a history of SLI develop reading comprehension and word recognition skills at or above the age appropriate level. This review of the literature indicates that factors including word recognition, oral language, nonverbal ability and working memory may explain reading comprehension difficulties in SLI, DS and ASD. In addition, it highlights methodological issues, implications of poor reading comprehension and fruitful areas for future research.
Resumo:
White matter tractsc onnecting areas involved in speech and motor control were examined using diffusion-tensor imagingingin a sample of peoplewhostutter (n=29) who were heterogeneous with respect to age, sex, handedness and stuttering severity. The goals were to replicate previous findings in developmental stuttering and to extend ourknowledge by evaluating the relationship between white matter differences in people who stutter and factors such as age, sex, handedness and stuttering severity. We replicated previous findings that showed reduced integrity in white matter underlying ventral premotorcortex, cerebral peduncles and posteriorcorpus callosum in people who stutter, relative to controls. Tractography analysis additionally revealed significantly reduced white matter integrity in the arcuate fasciculus bilaterally and the left corticospinal tract and significantly reduced connectivity within theleft corticobulbar tract in people who stutter. Region-of-interest analyses revealed reduced white matter integrity in people whostutter in the three pairs ocerebellar peduncles thatcarry the afferent and efferent fibers of the cerebellum. Within thegroup of people who stutter, the higher the stuttering severity index, the lower the white matter integrity in the leftangular gyrus but the greater the white matter connectivity in theleft corticobulbartract. Also,in people who stutter, handedness and age predicted the integrity of the corticospinal tract and peduncles, respectively. Further studies are needed to determine which of these white matter differences relate to the neural basis of stuttering and which reflect experience-dependent plasticity.
Resumo:
Accurate co-ordination of accommodation and convergence is necessary to view near objects and develop fine motor co-ordination. We used a remote haploscopic videorefraction paradigm to measure longitudinal changes in simultaneous ocular accommodation and vergence to targets at different depths, and to all combinations of blur, binocular disparity, and change-in-size (“proximity”) cues. Infants were followed longitudinally and compared to older children and young adults, with the prediction that sensitivity to different cues would change during development. Mean infant responses to the most naturalistic condition were similar to those of adults from 6-7 weeks (accommodation) and 8-9 weeks (vergence). Proximity cues influenced responses most in infants less than 14 weeks of age, but sensitivity declined thereafter. Between 12-28 weeks of age infants were equally responsive to all three cues, while in older children and adults manipulation of disparity resulted in the greatest changes in response. Despite rapid development of visual acuity (thus increasing availability of blur cues), responses to blur were stable throughout development. Our results suggest that during much of infancy, vergence and accommodation responses are not dependent on the development of specific depth cues, but make use of any cues available to drive appropriate changes in response.
Resumo:
The prevalence of obesity and diabetes, which are heritable traits that arise from the interactions of multiple genes and lifestyle factors, continues to rise worldwide, causing serious health problems and imposing a substantial economic burden on societies. For the past 15 years, candidate gene and genome-wide linkage studies have been the main genetic epidemiological approaches to identify genetic loci for obesity and diabetes, yet progress has been slow and success limited. The genome-wide association approach, which has become available in recent years, has dramatically changed the pace of gene discoveries. Genome-wide association is a hypothesis-generating approach that aims to identify new loci associated with the disease or trait of interest. So far, three waves of large-scale genome-wide association studies have identified 19 loci for common obesity and 18 for common type 2 diabetes. Although the combined contribution of these loci to the variation in obesity and diabetes risk is small and their predictive value is typically low, these recently identified loci are set to substantially improve our insights into the pathophysiology of obesity and diabetes. This will require integration of genetic epidemiological methods with functional genomics and proteomics. However, the use of these novel insights for genetic screening and personalised treatment lies some way off in the future.
Resumo:
Genes play an important role in the development of diabetes mellitus. Putative susceptibility genes could be the key to the development of diabetes. Type 1 diabetes mellitus is one of the most common chronic diseases of childhood. A combination of genetic and environmental factors is most likely the cause of Type 1 diabetes. The pathogenetic sequence leading to the selective autoimmune destruction of islet beta-cells and development of Type 1 diabetes involves genetic factors, environmental factors, immune regulation and chemical mediators. Unlike Type 1 diabetes mellitus, Type 2 diabetes is often considered a polygenic disorder with multiple genes located on different chromosomes being associated with this condition. This is further complicated by numerous environmental factors which also contribute to the clinical manifestation of the disorder in genetically predisposed persons. Only a minority of cases of type 2 diabetes are caused by single gene defects such as maturity onset diabetes of the young (MODY), syndrome of insulin resistance (insulin receptor defect) and maternally inherited diabetes and deafness (mitochondrial gene defect). Although Type 2 diabetes mellitus appears in almost epidemic proportions our knowledge of the mechanism of this disease is limited. More information about insulin secretion and action and the genetic variability of the various factors involved will contribute to better understanding and classification of this group of diseases. This article discusses the results of various genetic studies on diabetes with special reference to Indian population.
Resumo:
A cardinal property of neural stem cells (NSCs) is their ability to adopt multiple fates upon differentiation. The epigenome is widely seen as a read-out of cellular potential and a manifestation of this can be seen in embryonic stem cells (ESCs), where promoters of many lineage-specific regulators are marked by a bivalent epigenetic signature comprising trimethylation of both lysine 4 and lysine 27 of histone H3 (H3K4me3 and H3K27me3, respectively). Bivalency has subsequently emerged as a powerful epigenetic indicator of stem cell potential. Here, we have interrogated the epigenome during differentiation of ESC-derived NSCs to immature GABAergic interneurons. We show that developmental transitions are accompanied by loss of bivalency at many promoters in line with their increasing developmental restriction from pluripotent ESC through multipotent NSC to committed GABAergic interneuron. At the NSC stage, the promoters of genes encoding many transcriptional regulators required for differentiation of multiple neuronal subtypes and neural crest appear to be bivalent, consistent with the broad developmental potential of NSCs. Upon differentiation to GABAergic neurons, all non-GABAergic promoters resolve to H3K27me3 monovalency, whereas GABAergic promoters resolve to H3K4me3 monovalency or retain bivalency. Importantly, many of these epigenetic changes occur before any corresponding changes in gene expression. Intriguingly, another group of gene promoters gain bivalency as NSCs differentiate toward neurons, the majority of which are associated with functions connected with maturation and establishment and maintenance of connectivity. These data show that bivalency provides a dynamic epigenetic signature of developmental potential in both NSCs and in early neurons. Stem Cells 2013;31:1868-1880.
Resumo:
Achievement motivation represents the energization and direction of competence-based behavior. Despite the ubiquity and importance of achievement motivation across the life span, developmental research in this area is quite sparse. In this chapter, we discuss developmental considerations and provide an overview of the developmentally relevant research that has been conducted on achievement motivation. Our review focuses specifically on the two most prominent constructs that have emerged in the achievement motivation literature in the past century: Motive dispositions (the need for achievement and fear of failure) and goals (mastery-approach, performance-approach, mastery-avoidance, and performance-avoidance achievement goals). (PsycINFO Database Record (c) 2012 APA, all rights reserved)(chapter)
Resumo:
This paper explores the shifting cultural politics of development as expressed in the changing narratives and discursive transparencies of fair trade marketing tactics in the UK. Pursued through what I call ‘developmental consumption’ and the increasing celebritization of development, it is now through the global media mega-star that the subaltern speaks. After a more general discussion of the implications of the celebritization of development, specific analysis focuses on two parallel processes complicit in the ‘mainstreaming’ of fair trade markets and the desire to develop fair trade as a product of ‘quality’. The first involves improving the taste of fair trade commodities through alterations in their material supply chains while the second involves novel marketing narratives designed to invoke these conventions of quality through highly meaningful discursive and visual means. The later process is conceptualized through the theoretical device of the shifting ‘embodiments’ of fair trade which have moved from small farmers’ livelihoods, to landscapes of ‘quality’, to increasing congeries of celebrities such as Chris Martin from the UK band Coldplay. These shifts encapsulate what is referred to here as fair trade’s Faustian Bargain and its ambiguous results: the creation of increasing economic returns and, thus, more development through the movement of fair trade goods into mainstream retail markets at the same time there is a de-centering of the historical discursive transparency at the core of fair trade’s moral economy. Here, then, the celebritization of fair trade has the potential to create ‘the mirror of consumption’, whereby, our gaze is reflected back upon ourselves in the form of ‘the rich and famous’ Northern celebrity muddling the ethics of care developed by connecting consumers to fair trade farmers and their livelihoods. The paper concludes with a consideration of development and fair trade politics in the context of their growing aestheticization and celebritization.
Resumo:
Aims: To understand effects of tissue type, growth stage and soil fertilisers on bacterial endophyte communities of winter wheat (Triticum aestivum cv. Hereward). Methods: Endophytes were isolated from wheat grown under six fertiliser conditions in the long term Broadbalk Experiment at Rothamsted Research, UK. Samples were taken in May and July from root and leaf tissues. Results: Root and leaf communities differed in abundance and composition of endophytes. Endophytes were most abundant in roots and the Proteobacteria were most prevalent. In contrast, Firmicutes and Actinobacteria, the Gram positive phyla, were most prevalent in the leaves. Both fertiliser treatment and sample time influenced abundance and relative proportions of each phylum and genus in the endosphere. A higher density of endophytes was found in the Nil input treatment plants. Conclusions: Robust isolation techniques and stringent controls are critical for accurate recovery of endophytes. The plant tissue type, plant growth stage, and soil fertiliser treatment all contribute to the composition of the endophytic bacterial community in wheat. These results should help facilitate targeted development of endophytes for beneficial applications in agriculture.