69 resultados para Detection and segmentation
Resumo:
The prevalence of the metabolic syndrome (MetS), CVD and type 2 diabetes (T2D) is known to be higher in populations from the Indian subcontinent compared with the general UK population. While identification of this increased risk is crucial to allow for effective treatment, there is controversy over the applicability of diagnostic criteria, and particularly measures of adiposity in ethnic minorities. Diagnostic cut-offs for BMI and waist circumference have been largely derived from predominantly white Caucasian populations and, therefore, have been inappropriate and not transferable to Asian groups. Many Asian populations, particularly South Asians, have a higher total and central adiposity for a similar body weight compared with matched Caucasians and greater CVD risk associated with a lower BMI. Although the causes of CVD and T2D are multi-factorial, diet is thought to make a substantial contribution to the development of these diseases. Low dietary intakes and tissue levels of long-chain (LC) n-3 PUFA in South Asian populations have been linked to high-risk abnormalities in the MetS. Conversely, increasing the dietary intake of LC n-3 PUFA in South Asians has proved an effective strategy for correcting such abnormalities as dyslipidaemia in the MetS. Appropriate diagnostic criteria that include a modified definition of adiposity must be in place to facilitate the early detection and thus targeted treatment of increased risk in ethnic minorities.
Resumo:
A method is described for the analysis of deuterated and undeuterated alpha-tocopherol in blood components using liquid chromatography coupled to an orthogonal acceleration time-of-flight (TOF) mass spectrometer. Optimal ionisation conditions for undeuterated (d0) and tri- and hexadeuterated (d3 or d6) alpha-tocopherol standards were found with negative ion mode electrospray ionisation. Each species produced an isotopically resolved single ion of exact mass. Calibration curves of pure standards were linear in the range tested (0-1.5 muM, 0-15 pmol injected). For quantification of d0 and d6 in blood components following a standard solvent extraction, a stable-isotope-labelled internal standard (d3-alpha-tocopherol) was employed. To counter matrix ion suppression effects, standard response curves were generated following identical solvent extraction procedures to those of the samples. Within-day and between-day precision were determined for quantification of d0- and d6-labelled alpha-tocopherol in each blood component and both averaged 3-10%. Accuracy was assessed by comparison with a standard high-performance liquid chromatography (HPLC) method, achieving good correlation (r(2) = 0.94), and by spiking with known concentrations of alpha-tocopherol (98% accuracy). Limits of detection and quantification were determined to be 5 and 50 fmol injected, respectively. The assay was used to measure the appearance and disappearance of deuterium-labelled alpha-tocopherol in human blood components following deuterium-labelled (d6) RRR-alpha-tocopheryl acetate ingestion. The new LC/TOFMS method was found to be sensitive, required small sample volumes, was reproducible and robust, and was capable of high throughput when large numbers of samples were generated. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
In the past decade, airborne based LIght Detection And Ranging (LIDAR) has been recognised by both the commercial and public sectors as a reliable and accurate source for land surveying in environmental, engineering and civil applications. Commonly, the first task to investigate LIDAR point clouds is to separate ground and object points. Skewness Balancing has been proven to be an efficient non-parametric unsupervised classification algorithm to address this challenge. Initially developed for moderate terrain, this algorithm needs to be adapted to handle sloped terrain. This paper addresses the difficulty of object and ground point separation in LIDAR data in hilly terrain. A case study on a diverse LIDAR data set in terms of data provider, resolution and LIDAR echo has been carried out. Several sites in urban and rural areas with man-made structure and vegetation in moderate and hilly terrain have been investigated and three categories have been identified. A deeper investigation on an urban scene with a river bank has been selected to extend the existing algorithm. The results show that an iterative use of Skewness Balancing is suitable for sloped terrain.
Resumo:
Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.
Resumo:
This paper presents the results of the crowd image analysis challenge of the Winter PETS 2009 workshop. The evaluation is carried out using a selection of the metrics developed in the Video Analysis and Content Extraction (VACE) program and the CLassification of Events, Activities, and Relationships (CLEAR) consortium [13]. The evaluation highlights the detection and tracking performance of the authors’systems in areas such as precision, accuracy and robustness. The performance is also compared to the PETS 2009 submitted results.
Resumo:
This paper presents the results of the crowd image analysis challenge of the PETS2010 workshop. The evaluation was carried out using a selection of the metrics developed in the Video Analysis and Content Extraction (VACE) program and the CLassification of Events, Activities, and Relationships (CLEAR) consortium. The PETS 2010 evaluation was performed using new ground truthing create from each independant two dimensional view. In addition, the performance of the submissions to the PETS 2009 and Winter-PETS 2009 were evaluated and included in the results. The evaluation highlights the detection and tracking performance of the authors’ systems in areas such as precision, accuracy and robustness.
Resumo:
The hexaazamacrocycles [28](DBF)2N6 {cyclo[bis(4,6-dimethyldibenzo[b,d]furaniminoethyleneiminoethylene]} and [32](DBF)2N6 {cyclo[bis(4,6-dimethyldibenzo[b,d]furaniminopropyleneiminopropylene]} form stable dinuclear copper(II) complexes suitable to behave as receptors for several anionic substrates. These two receptors were used to study the binding interactions with several substrates, such as imidazole (Him) and some carboxylates [benzoate (bz−), oxalate (ox2−), malonate (mal2−), phthalate (ph2−), isophthalate (iph2−), and terephthalate (tph2−)] by spectrophotometric titrations and EPR spectroscopy in MeOH (or H2O):DMSO (1:1 v/v) solution. The largest association constant was found for ox2− with Cu2[32](DBF)2N64+, whereas for the aromatic dicarboxylate anions the binding constants follow the trend ph2− > iph2− > tph2−, i.e. decrease with the increase of the distance of the two binding sites of the substrate. On the other hand, the large blue shift of 68 nm observed by addition of Him to Cu2[32](DBF)2N64+ points out for the formation of the bridged CuimCu cascade complex, indicating this receptor as a potential sensor for the detection and determination of imidazole in solution. The X-band EPR spectra of the Cu2[28](DBF)2N64+ and Cu2[32](DBF)2N6]4+ complexes and the cascade complexes with the substrates, performed in H2O:DMSO (1:1 v/v) at 5 to 15 K, showed that the CuCu distance is slightly larger than the one found in crystal state and that this distance increases when the substrate is accommodated between the two copper centres. The crystal structure of [Cu2[28](DBF)2N6(ph)2]·CH3OH was determined by X-ray diffraction and revealed the two copper centres bridged by two ph2− anions at a Cu···Cu distance of 5.419(1) Å. Each copper centre is surrounded by three carboxylate oxygen atoms from two phthalate anions and three contiguous nitrogen atoms of the macrocycle in a pseudo octahedral coordination environment.
Resumo:
Measured process data normally contain inaccuracies because the measurements are obtained using imperfect instruments. As well as random errors one can expect systematic bias caused by miscalibrated instruments or outliers caused by process peaks such as sudden power fluctuations. Data reconciliation is the adjustment of a set of process data based on a model of the process so that the derived estimates conform to natural laws. In this paper, techniques for the detection and identification of both systematic bias and outliers in dynamic process data are presented. A novel technique for the detection and identification of systematic bias is formulated and presented. The problem of detection, identification and elimination of outliers is also treated using a modified version of a previously available clustering technique. These techniques are also combined to provide a global dynamic data reconciliation (DDR) strategy. The algorithms presented are tested in isolation and in combination using dynamic simulations of two continuous stirred tank reactors (CSTR).
Resumo:
The first application of high field NMR spectroscopy (800 MHz for 1H observation) to human hepatic bile (as opposed to gall bladder bile) is reported. The bile sample used for detailed investigation was from a donor liver with mild fat infiltration, collected during organ retrieval prior to transplantation. In addition, to focus on the detection of bile acids in particular, a bile extract was analysed by 800 MHz 1H NMR spectroscopy, HPLC-NMR/MS and UPLC-MS. In the whole bile sample, 40 compounds have been assigned with the aid of two-dimensional 1H–1H TOCSY and 1H–13C HSQC spectra. These include phosphatidylcholine, 14 amino acids, 10 organic acids, 4 carbohydrates and polyols (glucose, glucuronate, glycerol and myo-inositol), choline, phosphocholine, betaine, trimethylamine-N-oxide and other small molecules. An initial NMR-based assessment of the concentration range of some key metabolites has been made. Some observed chemical shifts differ from expected database values, probably due to a difference in bulk diamagnetic susceptibility. The NMR spectra of the whole extract gave identification of the major bile acids (cholic, deoxycholic and chenodeoxycholic), but the glycine and taurine conjugates of a given bile acid could not be distinguished. However, this was achieved by HPLC-NMR/MS, which enabled the separation and identification of ten conjugated bile acids with relative abundances varying from approximately 0.1% (taurolithocholic acid) to 34.0% (glycocholic acid), of which, only the five most abundant acids could be detected by NMR, including the isomers glycodeoxycholic acid and glycochenodeoxycholic acid, which are difficult to distinguish by conventional LC-MS analysis. In a separate experiment, the use of UPLC-MS allowed the detection and identification of 13 bile acids. This work has shown the complementary potential of NMR spectroscopy, MS and hyphenated NMR/MS for elucidating the complex metabolic profile of human hepatic bile. This will be useful baseline information in ongoing studies of liver excretory function and organ transplantation.
Resumo:
In this study, we compare two different cyclone-tracking algorithms to detect North Atlantic polar lows, which are very intense mesoscale cyclones. Both approaches include spatial filtering, detection, tracking and constraints specific to polar lows. The first method uses digital bandpass-filtered mean sea level pressure (MSLP) fieldsin the spatial range of 200�600 km and is especially designed for polar lows. The second method also uses a bandpass filter but is based on the discrete cosine transforms (DCT) and can be applied to MSLP and vorticity fields. The latter was originally designed for cyclones in general and has been adapted to polar lows for this study. Both algorithms are applied to the same regional climate model output fields from October 1993 to September 1995 produced from dynamical downscaling of the NCEP/NCAR reanalysis data. Comparisons between these two methods show that different filters lead to different numbers and locations of tracks. The DCT is more precise in scale separation than the digital filter and the results of this study suggest that it is more suited for the bandpass filtering of MSLP fields. The detection and tracking parts also influence the numbers of tracks although less critically. After a selection process that applies criteria to identify tracks of potential polar lows, differences between both methods are still visible though the major systems are identified in both.
Resumo:
Abstract Background: The analysis of the Auditory Brainstem Response (ABR) is of fundamental importance to the investigation of the auditory system behaviour, though its interpretation has a subjective nature because of the manual process employed in its study and the clinical experience required for its analysis. When analysing the ABR, clinicians are often interested in the identification of ABR signal components referred to as Jewett waves. In particular, the detection and study of the time when these waves occur (i.e., the wave latency) is a practical tool for the diagnosis of disorders affecting the auditory system. Significant differences in inter-examiner results may lead to completely distinct clinical interpretations of the state of the auditory system. In this context, the aim of this research was to evaluate the inter-examiner agreement and variability in the manual classification of ABR. Methods: A total of 160 ABR data samples were collected, for four different stimulus intensity (80dBHL, 60dBHL, 40dBHL and 20dBHL), from 10 normal-hearing subjects (5 men and 5 women, from 20 to 52 years). Four examiners with expertise in the manual classification of ABR components participated in the study. The Bland-Altman statistical method was employed for the assessment of inter-examiner agreement and variability. The mean, standard deviation and error for the bias, which is the difference between examiners’ annotations, were estimated for each pair of examiners. Scatter plots and histograms were employed for data visualization and analysis. Results: In most comparisons the differences between examiner’s annotations were below 0.1 ms, which is clinically acceptable. In four cases, it was found a large error and standard deviation (>0.1 ms) that indicate the presence of outliers and thus, discrepancies between examiners. Conclusions: Our results quantify the inter-examiner agreement and variability of the manual analysis of ABR data, and they also allows for the determination of different patterns of manual ABR analysis.
Resumo:
The purolindolines are small cysteine-rich proteins which are present in the grain of wheat. They have a major impact on the utilisation of the grain as they are the major determinants of grain texture, which affects both milling and baking properties. Bread and durum wheats were transformed with constructs comprising the promoter regions of the Puroindoline a (Pina) and Puroindoline b (Pinb) genes fused to the uidA (GUS) reporter gene. Nine lines showing 3:1 segregation for the transgene and comprising all transgene/species combinations were selected for detailed analysis of transgene expression during grain development. This showed that transgene expression occurred only in the starchy endosperm cells and was not observed in any other seed or vegetative tissues. The location of the puroindoline proteins in these cells was confirmed by tissue printing of developing grain, using a highly specific monoclonal antibody for detection and an antibody to the aleurone-localised 8S globulin as a control. This provides clear evidence that puroindolines are only synthesised and accumulated in the starchy endosperm cells of the wheat grain.
Resumo:
While changes in land precipitation during the last 50 years have been attributed in part to human influences, results vary by season, are affected by data uncertainty and do not account for changes over ocean. One of the more physically robust responses of the water cycle to warming is the expected amplification of existing patterns of precipitation minus evaporation. Here, precipitation changes in wet and dry regions are analyzed from satellite data for 1988–2010, covering land and ocean. We derive fingerprints for the expected change from climate model simulations that separately track changes in wet and dry regions. The simulations used are driven with anthropogenic and natural forcings combined, and greenhouse gas forcing or natural forcing only. Results of detection and attribution analysis show that the fingerprint of combined external forcing is detectable in observations and that this intensification of the water cycle is partly attributable to greenhouse gas forcing.
Resumo:
Flooding is a particular hazard in urban areas worldwide due to the increased risks to life and property in these regions. Synthetic Aperture Radar (SAR) sensors are often used to image flooding because of their all-weather day-night capability, and now possess sufficient resolution to image urban flooding. The flood extents extracted from the images may be used for flood relief management and improved urban flood inundation modelling. A difficulty with using SAR for urban flood detection is that, due to its side-looking nature, substantial areas of urban ground surface may not be visible to the SAR due to radar layover and shadow caused by buildings and taller vegetation. This paper investigates whether urban flooding can be detected in layover regions (where flooding may not normally be apparent) using double scattering between the (possibly flooded) ground surface and the walls of adjacent buildings. The method estimates double scattering strengths using a SAR image in conjunction with a high resolution LiDAR (Light Detection and Ranging) height map of the urban area. A SAR simulator is applied to the LiDAR data to generate maps of layover and shadow, and estimate the positions of double scattering curves in the SAR image. Observations of double scattering strengths were compared to the predictions from an electromagnetic scattering model, for both the case of a single image containing flooding, and a change detection case in which the flooded image was compared to an un-flooded image of the same area acquired with the same radar parameters. The method proved successful in detecting double scattering due to flooding in the single-image case, for which flooded double scattering curves were detected with 100% classification accuracy (albeit using a small sample set) and un-flooded curves with 91% classification accuracy. The same measures of success were achieved using change detection between flooded and un-flooded images. Depending on the particular flooding situation, the method could lead to improved detection of flooding in urban areas.
Resumo:
Twitter has become a dependable microblogging tool for real time information dissemination and newsworthy events broadcast. Its users sometimes break news on the network faster than traditional newsagents due to their presence at ongoing real life events at most times. Different topic detection methods are currently used to match Twitter posts to real life news of mainstream media. In this paper, we analyse tweets relating to the English FA Cup finals 2012 by applying our novel method named TRCM to extract association rules present in hash tag keywords of tweets in different time-slots. Our system identify evolving hash tag keywords with strong association rules in each time-slot. We then map the identified hash tag keywords to event highlights of the game as reported in the ground truth of the main stream media. The performance effectiveness measure of our experiments show that our method perform well as a Topic Detection and Tracking approach.