116 resultados para Debugging in computer science
Resumo:
In the recent years, the unpredictable growth of the Internet has moreover pointed out the congestion problem, one of the problems that historicallyha ve affected the network. This paper deals with the design and the evaluation of a congestion control algorithm which adopts a FuzzyCon troller. The analogyb etween Proportional Integral (PI) regulators and Fuzzycon trollers is discussed and a method to determine the scaling factors of the Fuzzycon troller is presented. It is shown that the Fuzzycon troller outperforms the PI under traffic conditions which are different from those related to the operating point considered in the design.
Resumo:
This paper presents the results of the application of a parallel Genetic Algorithm (GA) in order to design a Fuzzy Proportional Integral (FPI) controller for active queue management on Internet routers. The Active Queue Management (AQM) policies are those policies of router queue management that allow the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. Two different parallel implementations of the genetic algorithm are adopted to determine an optimal configuration of the FPI controller parameters. Finally, the results of several experiments carried out on a forty nodes cluster of workstations are presented.
Resumo:
This paper focuses on improving computer network management by the adoption of artificial intelligence techniques. A logical inference system has being devised to enable automated isolation, diagnosis, and even repair of network problems, thus enhancing the reliability, performance, and security of networks. We propose a distributed multi-agent architecture for network management, where a logical reasoner acts as an external managing entity capable of directing, coordinating, and stimulating actions in an active management architecture. The active networks technology represents the lower level layer which makes possible the deployment of code which implement teleo-reactive agents, distributed across the whole network. We adopt the Situation Calculus to define a network model and the Reactive Golog language to implement the logical reasoner. An active network management architecture is used by the reasoner to inject and execute operational tasks in the network. The integrated system collects the advantages coming from logical reasoning and network programmability, and provides a powerful system capable of performing high-level management tasks in order to deal with network fault.
Resumo:
In the BiodiversityWorld project we are building a GRID to support scientific biodiversity-related research. The requirements associated with such a GRID are somewhat different from other GRIDs, and this has influenced the architecture that we have developed. In this paper we outline these requirements, most notably the need to interoperate over a diverse set of legacy databases and applications in an environment that supports effective resource discovery and use of these resources in complex workflows. Our architecture provides an invocation model that is usable over a wide range of resource types and underlying GRID middleware. However, there is a trade-off between the flexibility provided by our architecture and its performance. We discuss how this affects the inclusion of computationally intensive applications and applications that are highly interactive; we also consider the broader issue of interoperation with other GRIDs.
Resumo:
Finding the smallest eigenvalue of a given square matrix A of order n is computationally very intensive problem. The most popular method for this problem is the Inverse Power Method which uses LU-decomposition and forward and backward solving of the factored system at every iteration step. An alternative to this method is the Resolvent Monte Carlo method which uses representation of the resolvent matrix [I -qA](-m) as a series and then performs Monte Carlo iterations (random walks) on the elements of the matrix. This leads to great savings in computations, but the method has many restrictions and a very slow convergence. In this paper we propose a method that includes fast Monte Carlo procedure for finding the inverse matrix, refinement procedure to improve approximation of the inverse if necessary, and Monte Carlo power iterations to compute the smallest eigenvalue. We provide not only theoretical estimations about accuracy and convergence but also results from numerical tests performed on a number of test matrices.
Resumo:
This paper describes a framework architecture for the automated re-purposing and efficient delivery of multimedia content stored in CMSs. It deploys specifically designed templates as well as adaptation rules based on a hierarchy of profiles to accommodate user, device and network requirements invoked as constraints in the adaptation process. The user profile provides information in accordance with the opt-in principle, while the device and network profiles provide the operational constraints such as for example resolution and bandwidth limitations. The profiles hierarchy ensures that the adaptation privileges the users' preferences. As part of the adaptation, we took into account the support for users' special needs, and therefore adopted a template-based approach that could simplify the adaptation process integrating accessibility-by-design in the template.
Resumo:
This paper represents the first step in an on-going work for designing an unsupervised method based on genetic algorithm for intrusion detection. Its main role in a broader system is to notify of an unusual traffic and in that way provide the possibility of detecting unknown attacks. Most of the machine-learning techniques deployed for intrusion detection are supervised as these techniques are generally more accurate, but this implies the need of labeling the data for training and testing which is time-consuming and error-prone. Hence, our goal is to devise an anomaly detector which would be unsupervised, but at the same time robust and accurate. Genetic algorithms are robust and able to avoid getting stuck in local optima, unlike the rest of clustering techniques. The model is verified on KDD99 benchmark dataset, generating a solution competitive with the solutions of the state-of-the-art which demonstrates high possibilities of the proposed method.
Resumo:
Under the framework of the European Union Funded SAFEE project(1), this paper gives an overview of a novel monitoring and scene analysis system developed for use onboard aircraft in spatially constrained environments. The techniques discussed herein aim to warn on-board crew about pre-determined indicators of threat intent (such as running or shouting in the cabin), as elicited from industry and security experts. The subject matter experts believe that activities such as these are strong indicators of the beginnings of undesirable chains of events or scenarios, which should not be allowed to develop aboard aircraft. This project aimes to detect these scenarios and provide advice to the crew. These events may involve unruly passengers or be indicative of the precursors to terrorist threats. With a state of the art tracking system using homography intersections of motion images, and probability based Petri nets for scene understanding, the SAFEE behavioural analysis system automatically assesses the output from multiple intelligent sensors, and creates. recommendations that are presented to the crew using an integrated airborn user interface. Evaluation of the system is conducted within a full size aircraft mockup, and experimental results are presented, showing that the SAFEE system is well suited to monitoring people in confined environments, and that meaningful and instructive output regarding human actions can be derived from the sensor network within the cabin.
Resumo:
This paper investigates the use of really simple syndication (RSS) to dynamically change virtual environments. The case study presented here uses meteorological data downloaded from the Internet in the form of an RSS feed, this data is used to simulate current weather patterns in a virtual environment. The downloaded data is aggregated and interpreted in conjunction with a configuration file, used to associate relevant weather information to the rendering engine. The engine is able to animate a wide range of basic weather patterns. Virtual reality is a way of immersing a user into a different environment, the amount of immersion the user experiences is important. Collaborative virtual reality will benefit from this work by gaining a simple way to incorporate up-to-date RSS feed data into any environment scenario. Instead of simulating weather conditions in training scenarios, actual weather conditions can be incorporated, improving the scenario and immersion.
Resumo:
We describe, and make publicly available, two problem instance generators for a multiobjective version of the well-known quadratic assignment problem (QAP). The generators allow a number of instance parameters to be set, including those controlling epistasis and inter-objective correlations. Based on these generators, several initial test suites are provided and described. For each test instance we measure some global properties and, for the smallest ones, make some initial observations of the Pareto optimal sets/fronts. Our purpose in providing these tools is to facilitate the ongoing study of problem structure in multiobjective (combinatorial) optimization, and its effects on search landscape and algorithm performance.
Resumo:
The paper presents how workflow-oriented, single-user Grid portals could be extended to meet the requirements of users with collaborative needs. Through collaborative Grid portals different research and engineering teams would be able to share knowledge and resources. At the same time the workflow concept assures that the shared knowledge and computational capacity is aggregated to achieve the high-level goals of the group. The paper discusses the different issues collaborative support requires from Grid portal environments during the different phases of the workflow-oriented development work. While in the design period the most important task of the portal is to provide consistent and fault tolerant data management, during the workflow execution it must act upon the security framework its back-end Grids are built on.
Resumo:
This paper presents a parallel Linear Hashtable Motion Estimation Algorithm (LHMEA). Most parallel video compression algorithms focus on Group of Picture (GOP). Based on LHMEA we proposed earlier [1][2], we developed a parallel motion estimation algorithm focus inside of frame. We divide each reference frames into equally sized regions. These regions are going to be processed in parallel to increase the encoding speed significantly. The theory and practice speed up of parallel LHMEA according to the number of PCs in the cluster are compared and discussed. Motion Vectors (MV) are generated from the first-pass LHMEA and used as predictors for second-pass Hexagonal Search (HEXBS) motion estimation, which only searches a small number of Macroblocks (MBs). We evaluated distributed parallel implementation of LHMEA of TPA for real time video compression.