51 resultados para Controlled stochastic differential equation, Infinite-dimensional stochastic differential equation, Quadratic optimal control
Resumo:
We give a characterisation of the spectral properties of linear differential operators with constant coefficients, acting on functions defined on a bounded interval, and determined by general linear boundary conditions. The boundary conditions may be such that the resulting operator is not selfadjoint. We associate the spectral properties of such an operator $S$ with the properties of the solution of a corresponding boundary value problem for the partial differential equation $\partial_t q \pm iSq=0$. Namely, we are able to establish an explicit correspondence between the properties of the family of eigenfunctions of the operator, and in particular whether this family is a basis, and the existence and properties of the unique solution of the associated boundary value problem. When such a unique solution exists, we consider its representation as a complex contour integral that is obtained using a transform method recently proposed by Fokas and one of the authors. The analyticity properties of the integrand in this representation are crucial for studying the spectral theory of the associated operator.
Resumo:
We consider the Dirichlet boundary-value problem for the Helmholtz equation in a non-locally perturbed half-plane. This problem models time-harmonic electromagnetic scattering by a one-dimensional, infinite, rough, perfectly conducting surface; the same problem arises in acoustic scattering by a sound-soft surface. ChandlerWilde & Zhang have suggested a radiation condition for this problem, a generalization of the Rayleigh expansion condition for diffraction gratings, and uniqueness of solution has been established. Recently, an integral equation formulation of the problem has also been proposed and, in the special case when the whole boundary is both Lyapunov and a small perturbation of a flat boundary, the unique solvability of this integral equation has been shown by Chandler-Wilde & Ross by operator perturbation arguments. In this paper we study the general case, with no limit on surface amplitudes or slopes, and show that the same integral equation has exactly one solution in the space of bounded and continuous functions for all wavenumbers. As an important corollary we prove that, for a variety of incident fields including the incident plane wave, the Dirichlet boundary-value problem for the scattered field has a unique solution.
First order k-th moment finite element analysis of nonlinear operator equations with stochastic data
Resumo:
We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains.
Resumo:
Our objective was to investigate whether the presence of Glu298Asp polymorphism in the endothelial NO synthase (eNOS) gene differentially affects the postprandial blood pressure response to dietary nitrate-rich beetroot bread. A randomised, single-blind, controlled, crossover acute pilot study was performed in 14 healthy men (mean age: 34±9 years) who were retrospectively genotyped for Glu298Asp polymorphism (7GG; T carriers 7). Volunteers were randomised to receive 200 g beetroot-enriched bread (1.1 mmol nitrate) or control bread (no beetroot; 0.01 mmol nitrate) on two separate occasions 10 days apart. Baseline and incremental area under the curve of blood pressure and NOx (nitrate/nitrite) were measured for a 6-h postprandial period. A treatment × genotype interaction was observed for diastolic blood pressure (P<0.02), which was significantly lower in T carriers (P<0.01) after consumption of beetroot bread compared with control bread. No significant differences were observed in the GG group. The beneficial diastolic blood pressure reduction was observed only in the T carriers of the Glu298Asp polymorphism in the eNOS gene after consumption of nitrate-rich beetroot bread. These data require confirmation in a larger population group.
Resumo:
The disadvantage of the majority of data assimilation schemes is the assumption that the conditional probability density function of the state of the system given the observations [posterior probability density function (PDF)] is distributed either locally or globally as a Gaussian. The advantage, however, is that through various different mechanisms they ensure initial conditions that are predominantly in linear balance and therefore spurious gravity wave generation is suppressed. The equivalent-weights particle filter is a data assimilation scheme that allows for a representation of a potentially multimodal posterior PDF. It does this via proposal densities that lead to extra terms being added to the model equations and means the advantage of the traditional data assimilation schemes, in generating predominantly balanced initial conditions, is no longer guaranteed. This paper looks in detail at the impact the equivalent-weights particle filter has on dynamical balance and gravity wave generation in a primitive equation model. The primary conclusions are that (i) provided the model error covariance matrix imposes geostrophic balance, then each additional term required by the equivalent-weights particle filter is also geostrophically balanced; (ii) the relaxation term required to ensure the particles are in the locality of the observations has little effect on gravity waves and actually induces a reduction in gravity wave energy if sufficiently large; and (iii) the equivalent-weights term, which leads to the particles having equivalent significance in the posterior PDF, produces a change in gravity wave energy comparable to the stochastic model error. Thus, the scheme does not produce significant spurious gravity wave energy and so has potential for application in real high-dimensional geophysical applications.
Resumo:
Background: Previous data support the benefits of reducing dietary saturated fatty acids (SFAs) on insulin resistance (IR) and other metabolic risk factors. However, whether the IR status of those suffering from metabolic syndrome (MetS) affects this response is not established. OBJECTIVE: Our objective was to determine whether the degree of IR influences the effect of substituting high-saturated fatty acid (HSFA) diets by isoenergetic alterations in the quality and quantity of dietary fat on MetS risk factors. DESIGN: In this single-blind, parallel, controlled, dietary intervention study, MetS subjects (n = 472) from 8 European countries classified by different IR levels according to homeostasis model assessment of insulin resistance (HOMA-IR) were randomly assigned to 4 diets: an HSFA diet; a high-monounsaturated fatty acid (HMUFA) diet; a low-fat, high-complex carbohydrate (LFHCC) diet supplemented with long-chain n-3 polyunsaturated fatty acids (1.2 g/d); or an LFHCC diet supplemented with placebo for 12 wk (control). Anthropometric, lipid, inflammatory, and IR markers were determined. RESULTS: Insulin-resistant MetS subjects with the highest HOMA-IR improved IR, with reduced insulin and HOMA-IR concentrations after consumption of the HMUFA and LFHCC n-3 diets (P < 0.05). In contrast, subjects with lower HOMA-IR showed reduced body mass index and waist circumference after consumption of the LFHCC control and LFHCC n-3 diets and increased HDL cholesterol concentrations after consumption of the HMUFA and HSFA diets (P < 0.05). MetS subjects with a low to medium HOMA-IR exhibited reduced blood pressure, triglyceride, and LDL cholesterol levels after the LFHCC n-3 diet and increased apolipoprotein A-I concentrations after consumption of the HMUFA and HSFA diets (all P < 0.05). CONCLUSIONS: Insulin-resistant MetS subjects with more metabolic complications responded differently to dietary fat modification, being more susceptible to a health effect from the substitution of SFAs in the HMUFA and LFHCC n-3 diets. Conversely, MetS subjects without IR may be more sensitive to the detrimental effects of HSFA intake. The metabolic phenotype of subjects clearly determines response to the quantity and quality of dietary fat on MetS risk factors, which suggests that targeted and personalized dietary therapies may be of value for its different metabolic features.