51 resultados para Continental margins


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many species are extending their leading-edge (cool) range margins polewards in response to recent climate change. In the present study, we investigated range margin changes at the northern (cool) range margins of 1573 southerly-distributed species from 21 animal groups in Great Britain over the past four decades of climate change, updating previous work. Depending on data availability, range margin changes were examined over two time intervals during the past four decades. For four groups (birds, butterflies, macromoths, and dragonflies and damselflies), there were sufficient data available to examine range margin changes over both time intervals. We found that most taxa shifted their northern range margins polewards and this finding was not greatly influenced by changes in recorder effort. The mean northwards range margin change in the first time interval was 23 km per decade (N = 13 taxonomic groups) and, in the second interval, was 18 km per decade (N = 16 taxonomic groups) during periods when the British climate warmed by 0.21 and 0.28 °C per decade, respectively. For the four taxa examined over both intervals, there was evidence for higher rate of range margin change in the more recent time interval in the two Lepidoptera groups. Our analyses confirm a continued range margin shift polewards in a wide range of taxonomic groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist. As numerical weather prediction models continue to improve, operational centres are increasingly using the meteorological output from these to drive hydrological models, creating hydrometeorological systems capable of forecasting river flow and flood events at much longer lead times than has previously been possible. Furthermore, developments in, for example, modelling capabilities, data and resources in recent years have made it possible to produce global scale flood forecasting systems. In this paper, the current state of operational large scale flood forecasting is discussed, including probabilistic forecasting of floods using ensemble prediction systems. Six state-of-the-art operational large scale flood forecasting systems are reviewed, describing similarities and differences in their approaches to forecasting floods at the global and continental scale. Currently, operational systems have the capability to produce coarse-scale discharge forecasts in the medium-range and disseminate forecasts and, in some cases, early warning products, in real time across the globe, in support of national forecasting capabilities. With improvements in seasonal weather forecasting, future advances may include more seamless hydrological forecasting at the global scale, alongside a move towards multi-model forecasts and grand ensemble techniques, responding to the requirement of developing multi-hazard early warning systems for disaster risk reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5–14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.