50 resultados para Conditional Monte Carlo conditioning
Resumo:
Monte Carlo algorithms often aim to draw from a distribution π by simulating a Markov chain with transition kernel P such that π is invariant under P. However, there are many situations for which it is impractical or impossible to draw from the transition kernel P. For instance, this is the case with massive datasets, where is it prohibitively expensive to calculate the likelihood and is also the case for intractable likelihood models arising from, for example, Gibbs random fields, such as those found in spatial statistics and network analysis. A natural approach in these cases is to replace P by an approximation Pˆ. Using theory from the stability of Markov chains we explore a variety of situations where it is possible to quantify how ’close’ the chain given by the transition kernel Pˆ is to the chain given by P . We apply these results to several examples from spatial statistics and network analysis.
Resumo:
We consider the finite sample properties of model selection by information criteria in conditionally heteroscedastic models. Recent theoretical results show that certain popular criteria are consistent in that they will select the true model asymptotically with probability 1. To examine the empirical relevance of this property, Monte Carlo simulations are conducted for a set of non–nested data generating processes (DGPs) with the set of candidate models consisting of all types of model used as DGPs. In addition, not only is the best model considered but also those with similar values of the information criterion, called close competitors, thus forming a portfolio of eligible models. To supplement the simulations, the criteria are applied to a set of economic and financial series. In the simulations, the criteria are largely ineffective at identifying the correct model, either as best or a close competitor, the parsimonious GARCH(1, 1) model being preferred for most DGPs. In contrast, asymmetric models are generally selected to represent actual data. This leads to the conjecture that the properties of parameterizations of processes commonly used to model heteroscedastic data are more similar than may be imagined and that more attention needs to be paid to the behaviour of the standardized disturbances of such models, both in simulation exercises and in empirical modelling.
Resumo:
In a recent paper, Mason et al. propose a reliability test of ensemble forecasts for a continuous, scalar verification. As noted in the paper, the test relies on a very specific interpretation of ensembles, namely, that the ensemble members represent quantiles of some underlying distribution. This quantile interpretation is not the only interpretation of ensembles, another popular one being the Monte Carlo interpretation. Mason et al. suggest estimating the quantiles in this situation; however, this approach is fundamentally flawed. Errors in the quantile estimates are not independent of the exceedance events, and consequently the conditional exceedance probabilities (CEP) curves are not constant, which is a fundamental assumption of the test. The test would reject reliable forecasts with probability much higher than the test size.
Resumo:
Given a nonlinear model, a probabilistic forecast may be obtained by Monte Carlo simulations. At a given forecast horizon, Monte Carlo simulations yield sets of discrete forecasts, which can be converted to density forecasts. The resulting density forecasts will inevitably be downgraded by model mis-specification. In order to enhance the quality of the density forecasts, one can mix them with the unconditional density. This paper examines the value of combining conditional density forecasts with the unconditional density. The findings have positive implications for issuing early warnings in different disciplines including economics and meteorology, but UK inflation forecasts are considered as an example.
Resumo:
The objective of this paper is to apply the mis-specification (M-S) encompassing perspective to the problem of choosing between linear and log-linear unit-root models. A simple M-S encompassing test, based on an auxiliary regression stemming from the conditional second moment, is proposed and its empirical size and power are investigated using Monte Carlo simulations. It is shown that by focusing on the conditional process the sampling distributions of the relevant statistics are well behaved under both the null and alternative hypotheses. The proposed M-S encompassing test is illustrated using US total disposable income quarterly data.