59 resultados para Conal Ryan
Resumo:
We investigated commensalism of water use among annual shallow-rooted and perennial deep-rooted pasture legumes by examining the effect of hydraulic lift by Cullen pallidum (N.T.Burb.) J.W.Grimes and Medicago sativa on growth, survival and nutrient uptake of Trifolium subterraneum L. A vertically split-root design allowed separate control of soil water in top and bottom soil. Thirty-five days after watering ceased in the top tube, but soil remained at field capacity in the bottom tube, an increase in shallow soil water content by hydraulic lift was 5.6 and 5.9 g kg−1 soil overnight for C. pallidum and M. sativa, respectively. Trifolium subterraneum in this treatment maintained higher leaf water potentials (with M. sativa) or exhibited a slower decline (with C. pallidum) than without companion perennial plants; and shoot biomass of T. subterraneum was 56% (with C. pallidum) and 67% (with M. sativa) of that when both top and bottom tubes were at field capacity. Uptake of rubidium (a potassium analog) and phosphorus by T. subterraneum was not facilitated by hydraulic lift. Interestingly, phosphorus content was threefold greater, and shoot biomass 1.5–3.3-fold greater when T. subterraneum was interplanted with C. pallidum compared with M. sativa, although dry weight of C. pallidum was much greater than that of M. sativa. This study showed that interplanting with deep-rooted perennial legumes has benefited the survival of T. subterraneum.
Resumo:
Developing new perennial pasture legumes for low-P soils is a priority for Australian Mediterranean agro-ecosystems, where soil P availability is naturally low. As legumes tend to require higher P inputs than non-legumes, the ability of these plants to fix N2 under varying soil P levels must be determined. Therefore, the objective of this study was to investigate the influence of soil P supply on plant N status and nodule formation in 11 perennial legumes, including some novel pasture species. We investigated the effect of applying soil P, ranging from 0 to 384 μg P/g dry soil, on plant N status and nodulation in a glasshouse. Without exogenous P supply, shoot N concentration and N : P ratio were higher than at 6 μg P/g soil. Shoot N concentration and N : P ratio then changed little with further increase in P supply. There was a close positive correlation between the number of nodules and shoot P concentration in 7 of the 11 species. Total nodule dry weight and the percentage of plant dry weight that consisted of nodules increased when P supply increased from 6 to 48 μg P/g. Without exogenous P addition, N : P ratios partitioned into a two-group distribution, with species having a N : P ratio of either >70 or <50 g/g. We suggest that plants with a high N : P ratio may take up N from the soil constitutively, while those with a low N : P ratio may regulate their N uptake in relation to internal P concentration. The flexibility of the novel pasture legumes in this study to adjust their leaf N concentrations under different levels of soil P supplements other published evidence of good growth and high P uptake and P-use efficiency under low soil P supply and suggests their potential as pasture plants in low-P soils in Australian Mediterranean agro-ecosystems warrants further attention.
Resumo:
Two key plant adaptations for phosphorus (P) acquisition are carboxylate exudation into the rhizosphere and mycorrhizal symbioses. These target different soil P resources, presumably with different plant carbon costs. We examined the effect of inoculation with arbuscular mycorrhizal fungi (AMF) on amount of rhizosphere carboxylates and plant P uptake for 10 species of low-P adapted Kennedia grown for 23 weeks in low-P sand. Inoculation decreased carboxylates in some species (up to 50%), decreased plant dry weight (21%) and increased plant P content (23%). There was a positive logarithmic relationship between plant P content and the amount of rhizosphere citric acid for inoculated and uninoculated plants. Causality was indicated by experiments using sand where little citric acid was lost from the soil solution over 2 h and citric acid at low concentrations desorbed P into the soil solution. Senesced leaf P concentration was often low and P-resorption efficiencies reached >90%. In conclusion, we propose that mycorrhizally mediated resource partitioning occurred because inoculation reduced rhizosphere carboxylates, but increased plant P uptake. Hence, presumably, the proportion of plant P acquired from strongly sorbed sources decreased with inoculation, while the proportion from labile inorganic P increased. Implications for plant fitness under field conditions now require investigation.
Resumo:
Earlier accounting works have shown that an understanding of agenda entry is critical to better understanding the accounting standards setting process. Consider Walker and Robinson (1993; 1994) and Ryan (1998); and more generally agenda entrance as theorized in Kingdon (2011). In 2003, the IASB placed on its agenda a project to promulgate a standard for small and medium-sized entities (SMEs). This provides our focus. It seemed to be a departure from the IASB’s constitutional focus on capital market participants. Kingdon’s three-streams model of agenda entry helps to identify some of the complexities related to politics and decision making messiness that resulted in a standard setting project for simplified IFRS, misleadingly titled IFRS for SMEs. Complexities relate to the broader international regulatory context, including the boundaries of the IASB’s standard-setting jurisdiction, the role of board members in changing those boundaries, and such sensitivities over the language that the IASB could not agree on a suitably descriptive title. The paper shows similarities with earlier agenda entrance studies by Walker and Robinson (1994) and Ryan (1998). By drawing on interviewees’ recollections and other material it especially reinforces the part played by the nuanced complexities that influence what emerges as an international accounting standard.
Resumo:
The archaeological site of Kharaneh IV in Jordan's Azraq Basin, and its relatively near neighbour Jilat 6 show evidence of sustained occupation of substantial size through the Early to Middle Epipalaeolithic (c. 24,000 - 15,000 cal BP). Here we review the geomorphological evidence for the environmental setting in which Kharaneh IV was established. The on-site stratigraphy is clearly differentiated from surrounding sediments, marked visually as well as by higher magnetic susceptibility values. Dating and analysis of off-site sediments show that a significant wetland existed at the site prior to and during early site occupation (~ 23,000 - 19,000 BP). This may explain why such a substantial site existed at this location. This wetland dating to the Last Glacial Maximum also provides important information on the palaeoenvironments and potential palaeoclimatic scenarios for today's eastern Jordanian desert, from where such evidence is scarce.
Resumo:
Background and Aims Ptilotus polystachyus (green mulla mulla; ptilotus) is a short-lived perennial herb that occurs widely in Australia in arid and semi-arid regions with nutrient poor soils. As this species shows potential for domestication, its response to addition of phosphorus (P) and nitrogen (N) was compared to a variety of the domesticated exotic perennial pasture herb Cichorium intybus (chicory), ‘Puna’. Methods Pots were filled with 3 kg of an extremely nutrient-deficient sterilized field soil that contained 3 mg kg−1 mineral N and 2 mg kg−1 bicarbonate-extractable P. The growth and P and N accumulation of ptilotus and chicory in response to seven rates of readily available phosphorus (0–300 mg P pot−1) and nitrogen (N) (0–270 mg N pot−1) was examined. Key Results Ptilotus grew extremely well under low P conditions: shoot dry weights were 23, 6 and 1·7 times greater than for chicory at the three lowest levels of P addition, 0, 15 and 30 mg P pot−1, respectively. Ptilotus could not downregulate P uptake. Concentrations of P in shoots approached 4 % of dry weight and cryo-scanning electron microscopy and X-ray microanalysis showed 35–196 mm of P in cell vacuoles in a range of tissues from young leaves. Ptilotus had a remarkable tolerance of high P concentrations in shoots. While chicory exhibited symptoms of P toxicity at the highest rate of P addition (300 mg P pot−1), no symptoms were present for ptilotus. The two species responded in a similar manner to addition of N. Conclusions In comparison to chicory, ptilotus demonstrated an impressive ability to grow well under conditions of low and high P availability. Further study of the mechanisms of P uptake and tolerance in ptilotus is warranted.
Resumo:
Members of the Australian native perennial Fabaceae have been little explored with regard to their root biology and the role played by arbuscular mycorrhizal (AM) fungi in their establishment, nutrition and long-term health. The ultimate goal of our research is to determine the dependency of native perennial legumes on their co-evolved AM fungi and conversely, the impact of AM fungal species in agricultural fields on the productivity of sown native perennial legume pastures. In this paper we investigate the colonisation morphology in roots and the AMF, identified by spores extracted from rhizosphere soil, from three replicate plots of each of the native legumes, Cullen australasicum, C. tenax and Lotus australis and the exotic legumes L. pedunculatus and Medicago sativa. The plants were grown in an agricultural field. The level and density of colonisation by AM fungi, and the frequency of intraradical and extraradical hyphae, arbuscules, intraradical spores and hyphal coils all differed between host plants and did not consistently differ between native and exotic species. However, there were strong similarities between species in the same genus. The three dominant species of AM fungi in rhizosphere soil also differed with host plant, but one fungus (Glomus mosseae) was always the most dominant. Sub-dominant AM species were the same between species in the same genus. No consistent differences in dominant spores were observed between the exotic and native Fabaceae species. Our results suggest that plant host influences the mycorrhizal community in the rhizosphere soil and that structural and functional differences in the symbiosis may occur at the plant genus level, not the species level or due to provenance.
Resumo:
Six Australian native herbaceous perennial legumes (Lotus australis, Swainsona colutoides, Swainsona swainsonioides, Cullen tenax, Glycine tabacina and Kennedia prorepens) were assessed in the glasshouse for nutritive value, soluble condensed tannins and production of herbage in response to three cutting treatments (regrowth harvested every 4 and 6 weeks and plants left uncut for 12 weeks). The Mediterranean perennial legumes Medicago sativa and Lotus corniculatus were also included. Dry matter (DM) yield of some native legumes was comparable to L. corniculatus, but M. sativa produced more DM than all species except S. swainsonioides after 12 weeks of regrowth. Dry matter yield of all native legumes decreased with increased cutting frequency, indicating a susceptibility to frequent defoliation. Shoot in vitro dry matter digestibility (DMD) was high (>70%) in most native legumes, except G. tabacina (65%) and K. prorepens (55%). Crude protein ranged from 21-28% for all legumes except K. prorepens (12%). More frequent cutting resulted in higher DMD and crude protein in all species, except for the DMD of C. tenax and L. australis, which did not change. Concentrations of soluble condensed tannins were 2-9 g/kg DM in the Lotus spp., 10-18 g/kg DM in K. prorepens and negligible (<1 g/kg) in the other legumes. Of the native species, C. tenax, S. swainsonioides and L. australis showed the most promise for use as forage plants and further evaluation under field conditions is now warranted.
Resumo:
Many Australian plant species have specific root adaptations for growth in phosphorus-impoverished soils, and are often sensitive to high external P concentrations. The growth responses of native Australian legumes in agricultural soils with elevated P availability in the surface horizons are unknown. The aim of these experiments was to test the hypothesis that increased P concentration in surface soil would reduce root proliferation at depth in native legumes. The effect of P placement on root distribution was assessed for two Australian legumes, Kennedia prorepens F. Muell. and Lotus australis Andrews, and the exotic Medicago sativa L. Three treatments were established in a low-P loam soil: amendment of 0.15 g mono-calcium phosphate in either (i) the top 50 mm (120 µg P g–1) or (ii) the top 500 mm (12 µg P g–1) of soil, and an unamended control. In the unamended soil M. sativa was shallow rooted, with 58% of the root length of in the top 50 mm. K. prorepens and L. australis had a more even distribution down the pot length, with only 4 and 22% of their roots in the 0–50 mm pot section, respectively. When exposed to amendment of P in the top 50 mm, root length in the top 50 mm increased 4-fold for K. prorepens and 10-fold for M. sativa, although the pattern of root distribution did not change for M. sativa. L. australis was relatively unresponsive to P additions and had an even distribution of roots down the pot. Shoot P concentrations differed according to species but not treatment (K. prorepens 2.1 mg g–1, L. australis 2.4 mg g–1, M. sativa 3.2 mg g–1). Total shoot P content was higher for K. prorepens than for the other species in all treatments. In a second experiment, mono-ester phosphatases were analysed from 1-mm slices of soil collected directly adjacent to the rhizosphere. All species exuded phosphatases into the rhizosphere, but addition of P to soil reduced phosphatase activity only for K. prorepens. Overall, high P concentration in the surface soil altered root distribution, but did not reduce root proliferation at depth. Furthermore, the Australian herbaceous perennial legumes had root distributions that enhanced P acquisition from low-P soils.
Resumo:
Observed and predicted changes in the strength of the westerly winds blowing over the Southern Ocean have motivated a number of studies of the response of the Antarctic Circumpolar Current and Southern Ocean Meridional Overturning Circulation (MOC) to wind perturbations and led to the discovery of the``eddy-compensation" regime, wherein the MOC becomes insensitive to wind changes. In addition to the MOC, tracer transport also depends on mixing processes. Here we show, in a high-resolution process model, that isopycnal mixing by mesoscale eddies is strongly dependent on the wind strength. This dependence can be explained by mixing-length theory and is driven by increases in eddy kinetic energy; the mixing length does not change strongly in our simulation. Simulation of a passive ventilation tracer (analogous to CFCs or anthropogenic CO$_2$) demonstrates that variations in tracer uptake across experiments are dominated by changes in isopycnal mixing, rather than changes in the MOC. We argue that, to properly understand tracer uptake under different wind-forcing scenarios, the sensitivity of isopycnal mixing to winds must be accounted for.
Resumo:
Introduction The rate of unplanned pregnancy in Australia remains high, which has contributed to Australia having one of the highest abortion rates of developed countries with an estimated 1 in 5 women having an abortion. The emergency contraceptive pill (ECP) offers a safe way of preventing unintended pregnancy after unprotected sex has occurred. While the ECP has been available over-the-counter in Australian pharmacies for over a decade, its use has not significantly increased. This paper presents a protocol for a qualitative study that aims to identify the barriers and facilitators to accessing the ECP from community pharmacies in Australia. Methods and analysis Data will be collected through one-on-one interviews that are semistructured and in-depth. Partnerships have been established with 2 pharmacy groups and 2 women's health organisations to aid with the recruitment of women and pharmacists for data collection purposes. Interview questions explore domains from the Theoretical Domains Framework in order to assess the factors aiding and/or hindering access to ECP from community pharmacies. Data collected will be analysed using deductive content analysis. The expected benefits of this study are that it will help develop evidence-based workforce interventions to strengthen the capacity and performance of community pharmacists as key ECP providers. Ethics and dissemination The findings will be disseminated to the research team and study partners, who will brainstorm ideas for interventions that would address barriers and facilitators to access identified from the interviews. Dissemination will also occur through presentations and peer-reviewed publications and the study participants will receive an executive summary of the findings. The study has been evaluated and approved by the Monash Human Research Ethics Committee.