163 resultados para Computerized Dynamic Posturography


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a hybrid control strategy integrating dynamic neural networks and feedback linearization into a predictive control scheme. Feedback linearization is an important nonlinear control technique which transforms a nonlinear system into a linear system using nonlinear transformations and a model of the plant. In this work, empirical models based on dynamic neural networks have been employed. Dynamic neural networks are mathematical structures described by differential equations, which can be trained to approximate general nonlinear systems. A case study based on a mixing process is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dense deployments of wireless local area networks (WLANs) are fast becoming a permanent feature of all developed cities around the world. While this increases capacity and coverage, the problem of increased interference, which is exacerbated by the limited number of channels available, can severely degrade the performance of WLANs if an effective channel assignment scheme is not employed. In an earlier work, an asynchronous, distributed and dynamic channel assignment scheme has been proposed that (1) is simple to implement, (2) does not require any knowledge of the throughput function, and (3) allows asynchronous channel switching by each access point (AP). In this paper, we present extensive performance evaluation of this scheme when it is deployed in the more practical non-uniform and dynamic topology scenarios. Specifically, we investigate its effectiveness (1) when APs are deployed in a nonuniform fashion resulting in some APs suffering from higher levels of interference than others and (2) when APs are effectively switched `on/off' due to the availability/lack of traffic at different times, which creates a dynamically changing network topology. Simulation results based on actual WLAN topologies show that robust performance gains over other channel assignment schemes can still be achieved even in these realistic scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless local area networks (WLANs) have changed the way many of us communicate, work, play and live. Due to its popularity, dense deployments are becoming a norm in many cities around the world. However, increased interference and traffic demands can severely limit the aggregate throughput achievable if an effective channel assignment scheme is not used. In this paper, we propose an enhanced asynchronous distributed and dynamic channel assignment scheme that is simple to implement, does not require any knowledge of the throughput function, allows asynchronous channel switching by each access point (AP) and is superior in performance. Simulation results show that our proposed scheme converges much faster than previously reported synchronous schemes, with a reduction in convergence time and channel switches by tip to 73.8% and 30.0% respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The popularity of wireless local area networks (WLANs) has resulted in their dense deployment in many cities around the world. The increased interference among different WLANs severely degrades the throughput achievable. This problem has been further exacerbated by the limited number of frequency channels available. An improved distributed and dynamic channel assignment scheme that is simple to implement and does not depend on the knowledge of the throughput function is proposed in this work. It also allows each access point (AP) to asynchronously switch to the new best channel. Simulation results show that our proposed scheme converges much faster than similar previously reported work, with a reduction in convergence time and channel switches as much as 77.3% and 52.3% respectively. When it is employed in dynamic environments, the throughput improves by up to 12.7%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic neural networks (DNNs), which are also known as recurrent neural networks, are often used for nonlinear system identification. The main contribution of this letter is the introduction of an efficient parameterization of a class of DNNs. Having to adjust less parameters simplifies the training problem and leads to more parsimonious models. The parameterization is based on approximation theory dealing with the ability of a class of DNNs to approximate finite trajectories of nonautonomous systems. The use of the proposed parameterization is illustrated through a numerical example, using data from a nonlinear model of a magnetic levitation system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study a minimum variance neuro self-tuning proportional-integral-derivative (PID) controller is designed for complex multiple input-multiple output (MIMO) dynamic systems. An approximation model is constructed, which consists of two functional blocks. The first block uses a linear submodel to approximate dominant system dynamics around a selected number of operating points. The second block is used as an error agent, implemented by a neural network, to accommodate the inaccuracy possibly introduced by the linear submodel approximation, various complexities/uncertainties, and complicated coupling effects frequently exhibited in non-linear MIMO dynamic systems. With the proposed model structure, controller design of an MIMO plant with n inputs and n outputs could be, for example, decomposed into n independent single input-single output (SISO) subsystem designs. The effectiveness of the controller design procedure is initially verified through simulations of industrial examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This paper presents a detailed study of fractal-based methods for texture characterization of mammographic mass lesions and architectural distortion. The purpose of this study is to explore the use of fractal and lacunarity analysis for the characterization and classification of both tumor lesions and normal breast parenchyma in mammography. Materials and methods: We conducted comparative evaluations of five popular fractal dimension estimation methods for the characterization of the texture of mass lesions and architectural distortion. We applied the concept of lacunarity to the description of the spatial distribution of the pixel intensities in mammographic images. These methods were tested with a set of 57 breast masses and 60 normal breast parenchyma (dataset1), and with another set of 19 architectural distortions and 41 normal breast parenchyma (dataset2). Support vector machines (SVM) were used as a pattern classification method for tumor classification. Results: Experimental results showed that the fractal dimension of region of interest (ROIs) depicting mass lesions and architectural distortion was statistically significantly lower than that of normal breast parenchyma for all five methods. Receiver operating characteristic (ROC) analysis showed that fractional Brownian motion (FBM) method generated the highest area under ROC curve (A z = 0.839 for dataset1, 0.828 for dataset2, respectively) among five methods for both datasets. Lacunarity analysis showed that the ROIs depicting mass lesions and architectural distortion had higher lacunarities than those of ROIs depicting normal breast parenchyma. The combination of FBM fractal dimension and lacunarity yielded the highest A z value (0.903 and 0.875, respectively) than those based on single feature alone for both given datasets. The application of the SVM improved the performance of the fractal-based features in differentiating tumor lesions from normal breast parenchyma by generating higher A z value. Conclusion: FBM texture model is the most appropriate model for characterizing mammographic images due to self-affinity assumption of the method being a better approximation. Lacunarity is an effective counterpart measure of the fractal dimension in texture feature extraction in mammographic images. The classification results obtained in this work suggest that the SVM is an effective method with great potential for classification in mammographic image analysis.