53 resultados para Climate variables


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyses of simulations of the last glacial maximum (LGM) made with 17 atmospheric general circulation models (AGCMs) participating in the Paleoclimate Modelling Intercomparison Project, and a high-resolution (T106) version of one of the models (CCSR1), show that changes in the elevation of tropical snowlines (as estimated by the depression of the maximum altitude of the 0 °C isotherm) are primarily controlled by changes in sea-surface temperatures (SSTs). The correlation between the two variables, averaged for the tropics as a whole, is 95%, and remains >80% even at a regional scale. The reduction of tropical SSTs at the LGM results in a drier atmosphere and hence steeper lapse rates. Changes in atmospheric circulation patterns, particularly the weakening of the Asian monsoon system and related atmospheric humidity changes, amplify the reduction in snowline elevation in the northern tropics. Colder conditions over the tropical oceans combined with a weakened Asian monsoon could produce snowline lowering of up to 1000 m in certain regions, comparable to the changes shown by observations. Nevertheless, such large changes are not typical of all regions of the tropics. Analysis of the higher resolution CCSR1 simulation shows that differences between the free atmospheric and along-slope lapse rate can be large, and may provide an additional factor to explain regional variations in observed snowline changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

14C-dated pollen and lake-level data from Europe are used to assess the spatial patterns of climate change between 6000 yr BP and present, as simulated by the NCAR CCM1 (National Center for Atmospheric Research, Community Climate Model, version 1) in response to the change in the Earth’s orbital parameters during this perod. First, reconstructed 6000 yr BP values of bioclimate variables obtained from pollen and lake-level data with the constrained-analogue technique are compared with simulated values. Then a 6000 yr BP biome map obtained from pollen data with an objective biome reconstruction (biomization) technique is compared with BIOME model results derived from the same simulation. Data and simulations agree in some features: warmer-than-present growing seasons in N and C Europe allowed forests to extend further north and to higher elevations than today, and warmer winters in C and E Europe prevented boreal conifers from spreading west. More generally, however, the agreement is poor. Predominantly deciduous forest types in Fennoscandia imply warmer winters than the model allows. The model fails to simulate winters cold enough, or summers wet enough, to allow temperate deciduous forests their former extended distribution in S Europe, and it incorrectly simulates a much expanded area of steppe vegetation in SE Europe. Similar errors have also been noted in numerous 6000 yr BP simulations with prescribed modern sea surface temperatures. These errors are evidently not resolved by the inclusion of interactive sea-surface conditions in the CCM1. Accurate representation of mid-Holocene climates in Europe may require the inclusion of dynamical ocean–atmosphere and/or vegetation–atmosphere interactions that most palaeoclimate model simulations have so far disregarded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. 2. Using data from an extensive national survey of English grasslands we show that surface soil (0-7cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. 3. Soil C stocks in the largest pool, of intermediate particle size (50-250 µm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0.45-50 µm), was explained by soil pH and the community abundance weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N rich vegetation. The C stock in the small active fraction (250-4000 µm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. 4. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. 5. Synthesis and Applications: Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1-100,000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subject of climate feedbacks focuses attention on global mean surface air temperature (GMST) as the key metric of climate change. But what does knowledge of past and future GMST tell us about the climate of specific regions? In the context of the ongoing UNFCCC process, this is an important question for policy-makers as well as for scientists. The answer depends on many factors, including the mechanisms causing changes, the timescale of the changes, and the variables and regions of interest. This paper provides a review and analysis of the relationship between changes in GMST and changes in local climate, first in observational records and then in a range of climate model simulations, which are used to interpret the observations. The focus is on decadal timescales, which are of particular interest in relation to recent and near-future anthropogenic climate change. It is shown that GMST primarily provides information about forced responses, but that understanding and quantifying internal variability is essential to projecting climate and climate impacts on regional-to-local scales. The relationship between local forced responses and GMST is often linear but may be nonlinear, and can be greatly complicated by competition between different forcing factors. Climate projections are limited not only by uncertainties in the signal of climate change but also by uncertainties in the characteristics of real-world internal variability. Finally, it is shown that the relationship between GMST and local climate provides a simple approach to climate change detection, and a useful guide to attribution studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean prediction systems are now able to analyse and predict temperature, salinity and velocity structures within the ocean by assimilating measurements of the ocean’s temperature and salinity into physically based ocean models. Data assimilation combines current estimates of state variables, such as temperature and salinity, from a computational model with measurements of the ocean and atmosphere in order to improve forecasts and reduce uncertainty in the forecast accuracy. Data assimilation generally works well with ocean models away from the equator but has been found to induce vigorous and unrealistic overturning circulations near the equator. A pressure correction method was developed at the University of Reading and the Met Office to control these circulations using ideas from control theory and an understanding of equatorial dynamics. The method has been used for the last 10 years in seasonal forecasting and ocean prediction systems at the Met Office and European Center for Medium-range Weather Forecasting (ECMWF). It has been an important element in recent re-analyses of the ocean heat uptake that mitigates climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – Construction projects usually suffer delays, and the causes of these delays and its cost overruns have been widely discussed, the weather being one of the most recurrent. The purpose of this paper is to analyze the influence of climate on standard construction work activities through a case study. Design/methodology/approach – By studying the extent at which some weather variables impede outdoor work from being effectively executed, new maps and tables for planning for delays are presented. In addition, a real case regarding the construction of several bridges in southern Chile is analyzed. Findings – Few studies have thoroughly addressed the influences of major climatic agents on the most common outdoor construction activities. The method detailed here provides a first approximation for construction planners to assess to what extent construction productivity will be influenced by the climate. Research limitations/implications – Although this study was performed in Chile, the simplified method proposed is entirely transferable to any other country, however, other weather or combinations of weather variables could be needed in other environments or countries. Practical implications – The implications will help reducing the negative social, economic and environmental outcomes that usually emerge from project delays. Originality/value – Climatic data were processed using extremely simple calculations to create a series of quantitative maps and tables that would be useful for any construction planner to decide the best moment of the year to start a project and, if possible, where to build it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dynamical wind-wave climate simulation covering the North Atlantic Ocean and spanning the whole 21st century under the A1B scenario has been compared with a set of statistical projections using atmospheric variables or large scale climate indices as predictors. As a first step, the performance of all statistical models has been evaluated for the present-day climate; namely they have been compared with a dynamical wind-wave hindcast in terms of winter Significant Wave Height (SWH) trends and variance as well as with altimetry data. For the projections, it has been found that statistical models that use wind speed as independent variable predictor are able to capture a larger fraction of the winter SWH inter-annual variability (68% on average) and of the long term changes projected by the dynamical simulation. Conversely, regression models using climate indices, sea level pressure and/or pressure gradient as predictors, account for a smaller SWH variance (from 2.8% to 33%) and do not reproduce the dynamically projected long term trends over the North Atlantic. Investigating the wind-sea and swell components separately, we have found that the combination of two regression models, one for wind-sea waves and another one for the swell component, can improve significantly the wave field projections obtained from single regression models over the North Atlantic.