115 resultados para Changes to accounting principles
Resumo:
Interferences from the spatially adjacent non-target stimuli evoke ERPs during non-target sub-trials and lead to false positives. This phenomenon is commonly seen in visual attention based BCIs and affects the performance of BCI system. Although, users or subjects tried to focus on the target stimulus, they still could not help being affected by conspicuous changes of the stimuli (flashes or presenting images) which were adjacent to the target stimulus. In view of this case, the aim of this study is to reduce the adjacent interference using new stimulus presentation pattern based on facial expression changes. Positive facial expressions can be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast will be big enough to evoke strong ERPs. In this paper, two different conditions (Pattern_1, Pattern_2) were used to compare across objective measures such as classification accuracy and information transfer rate as well as subjective measures. Pattern_1 was a “flash-only” pattern and Pattern_2 was a facial expression change of a dummy face. In the facial expression change patterns, the background is a positive facial expression and the stimulus is a negative facial expression. The results showed that the interferences from adjacent stimuli could be reduced significantly (P<;0.05) by using the facial expression change patterns. The online performance of the BCI system using the facial expression change patterns was significantly better than that using the “flash-only” patterns in terms of classification accuracy (p<;0.01), bit rate (p<;0.01), and practical bit rate (p<;0.01). Subjects reported that the annoyance and fatigue could be significantly decreased (p<;0.05) using the new stimulus presentation pattern presented in this paper.
Resumo:
OBJECTIVE: Interferences from spatially adjacent non-target stimuli are known to evoke event-related potentials (ERPs) during non-target flashes and, therefore, lead to false positives. This phenomenon was commonly seen in visual attention-based brain-computer interfaces (BCIs) using conspicuous stimuli and is known to adversely affect the performance of BCI systems. Although users try to focus on the target stimulus, they cannot help but be affected by conspicuous changes of the stimuli (such as flashes or presenting images) which were adjacent to the target stimulus. Furthermore, subjects have reported that conspicuous stimuli made them tired and annoyed. In view of this, the aim of this study was to reduce adjacent interference, annoyance and fatigue using a new stimulus presentation pattern based upon facial expression changes. Our goal was not to design a new pattern which could evoke larger ERPs than the face pattern, but to design a new pattern which could reduce adjacent interference, annoyance and fatigue, and evoke ERPs as good as those observed during the face pattern. APPROACH: Positive facial expressions could be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast is big enough to evoke strong ERPs. In this paper, a facial expression change pattern between positive and negative facial expressions was used to attempt to minimize interference effects. This was compared against two different conditions, a shuffled pattern containing the same shapes and colours as the facial expression change pattern, but without the semantic content associated with a change in expression, and a face versus no face pattern. Comparisons were made in terms of classification accuracy and information transfer rate as well as user supplied subjective measures. MAIN RESULTS: The results showed that interferences from adjacent stimuli, annoyance and the fatigue experienced by the subjects could be reduced significantly (p < 0.05) by using the facial expression change patterns in comparison with the face pattern. The offline results show that the classification accuracy of the facial expression change pattern was significantly better than that of the shuffled pattern (p < 0.05) and the face pattern (p < 0.05). SIGNIFICANCE: The facial expression change pattern presented in this paper reduced interference from adjacent stimuli and decreased the fatigue and annoyance experienced by BCI users significantly (p < 0.05) compared to the face pattern.
Resumo:
Background: Concerted evolution is normally used to describe parallel changes at different sites in a genome, but it is also observed in languages where a specific phoneme changes to the same other phoneme in many words in the lexicon—a phenomenon known as regular sound change. We develop a general statistical model that can detect concerted changes in aligned sequence data and apply it to study regular sound changes in the Turkic language family. Results: Linguistic evolution, unlike the genetic substitutional process, is dominated by events of concerted evolutionary change. Our model identified more than 70 historical events of regular sound change that occurred throughout the evolution of the Turkic language family, while simultaneously inferring a dated phylogenetic tree. Including regular sound changes yielded an approximately 4-fold improvement in the characterization of linguistic change over a simpler model of sporadic change, improved phylogenetic inference, and returned more reliable and plausible dates for events on the phylogenies. The historical timings of the concerted changes closely follow a Poisson process model, and the sound transition networks derived from our model mirror linguistic expectations. Conclusions: We demonstrate that a model with no prior knowledge of complex concerted or regular changes can nevertheless infer the historical timings and genealogical placements of events of concerted change from the signals left in contemporary data. Our model can be applied wherever discrete elements—such as genes, words, cultural trends, technologies, or morphological traits—can change in parallel within an organism or other evolving group.
Resumo:
Hormonal ligands for the nuclear receptor superfamily have at least two interacting mechanisms of action: 1) classical transcriptional regulation of target genes (genomic mechanisms); and 2) nongenomic actions that are initiated at the cell membrane, which could impact transcription. Although transcriptional mechanisms are increasingly well understood, membrane-initiated actions of these ligands are incompletely understood. Historically, this has led to a considerable divergence of thought in the molecular endocrine field. We have attempted to uncover principles of hormone action that are relevant to membrane-initiated actions of estrogens. There is evidence that the membrane-limited actions of hormones, particularly estrogens, involve the rapid activation of kinases and the release of calcium. Membrane actions of estrogens, which activate these rapid signaling cascades, can also potentiate nuclear transcription. These signaling cascades may occur in parallel or in series but subsequently converge at the level of modification of transcriptionally relevant molecules such as nuclear receptors and/or coactivators. In addition, other hormones or neurotransmitters may also activate cascades to crosstalk with estrogen receptor-mediated transcription. The idea of synergistic coupling between membrane-initiated and genomic actions of hormones fundamentally revises the paradigms of cell signaling in neuroendocrinology.
Resumo:
Precipitation is expected to respond differently to various drivers of anthropogenic climate change. We present the first results from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where nine global climate models have perturbed CO2, CH4, black carbon, sulfate, and solar insolation. We divide the resulting changes to global mean and regional precipitation into fast responses that scale with changes in atmospheric absorption and slow responses scaling with surface temperature change. While the overall features are broadly similar between models, we find significant regional intermodel variability, especially over land. Black carbon stands out as a component that may cause significant model diversity in predicted precipitation change. Processes linked to atmospheric absorption are less consistently modeled than those linked to top-of-atmosphere radiative forcing. We identify a number of land regions where the model ensemble consistently predicts that fast precipitation responses to climate perturbations dominate over the slow, temperature-driven responses.
Resumo:
Several global quantities are computed from the ERA40 reanalysis for the period 1958-2001 and explored for trends. These are discussed in the context of changes to the global observing system. Temperature, integrated water vapor (IWV), and kinetic energy are considered. The ERA40 global mean temperature in the lower troposphere has a trend of +0.11 K per decade over the period of 1979-2001, which is slightly higher than the MSU measurements, but within the estimated error limit. For the period 1958 2001 the warming trend is 0.14 K per decade but this is likely to be an artifact of changes in the observing system. When this is corrected for, the warming trend is reduced to 0.10 K per decade. The global trend in IWV for the period 1979-2001 is +0.36 mm per decade. This is about twice as high as the trend determined from the Clausius-Clapeyron relation assuming conservation of relative humidity. It is also larger than results from free climate model integrations driven by the same observed sea surface temperature as used in ERA40. It is suggested that the large trend in IWV does not represent a genuine climate trend but an artifact caused by changes in the global observing system such as the use of SSM/I and more satellite soundings in later years. Recent results are in good agreement with GPS measurements. The IWV trend for the period 1958-2001 is still higher but reduced to +0.16 mm per decade when corrected for changes in the observing systems. Total kinetic energy shows an increasing global trend. Results from data assimilation experiments strongly suggest that this trend is also incorrect and mainly caused by the huge changes in the global observing system in 1979. When this is corrected for, no significant change in global kinetic energy from 1958 onward can be found.
Resumo:
Identifying the signature of global warming in the world's oceans is challenging because low frequency circulation changes can dominate local temperature changes. The IPCC fourth assessment reported an average ocean heating rate of 0.21 ± 0.04 Wm−2 over the period 1961–2003, with considerable spatial, interannual and inter-decadal variability. We present a new analysis of millions of ocean temperature profiles designed to filter out local dynamical changes to give a more consistent view of the underlying warming. Time series of temperature anomaly for all waters warmer than 14°C show large reductions in interannual to inter-decadal variability and a more spatially uniform upper ocean warming trend (0.12 Wm−2 on average) than previous results. This new measure of ocean warming is also more robust to some sources of error in the ocean observing system. Our new analysis provides a useful addition for evaluation of coupled climate models, to the traditional fixed depth analyses.
Resumo:
Changes to stratospheric sudden warmings (SSWs) over the coming century, as predicted by the Geophysical Fluid Dynamics Laboratory (GFDL) chemistry climate model [Atmospheric Model With Transport and Chemistry (AMTRAC)], are investigated in detail. Two sets of integrations, each a three-member ensemble, are analyzed. The first set is driven with observed climate forcings between 1960 and 2004; the second is driven with climate forcings from a coupled model run, including trace gas concentrations representing a midrange estimate of future anthropogenic emissions between 1990 and 2099. A small positive trend in the frequency of SSWs is found. This trend, amounting to 1 event/decade over a century, is statistically significant at the 90% confidence level and is consistent over the two sets of model integrations. Comparison of the model SSW climatology between the late 20th and 21st centuries shows that the increase is largest toward the end of the winter season. In contrast, the dynamical properties are not significantly altered in the coming century, despite the increase in SSW frequency. Owing to the intrinsic complexity of our model, the direct cause of the predicted trend in SSW frequency remains an open question.
Resumo:
FAMOUS is an ocean-atmosphere general circulation model of low resolution, capable of simulating approximately 120 years of model climate per wallclock day using current high performance computing facilities. It uses most of the same code as HadCM3, a widely used climate model of higher resolution and computational cost, and has been tuned to reproduce the same climate reasonably well. FAMOUS is useful for climate simulations where the computational cost makes the application of HadCM3 unfeasible, either because of the length of simulation or the size of the ensemble desired. We document a number of scientific and technical improvements to the original version of FAMOUS. These improvements include changes to the parameterisations of ozone and sea-ice which alleviate a significant cold bias from high northern latitudes and the upper troposphere, and the elimination of volume-averaged drifts in ocean tracers. A simple model of the marine carbon cycle has also been included. A particular goal of FAMOUS is to conduct millennial-scale paleoclimate simulations of Quaternary ice ages; to this end, a number of useful changes to the model infrastructure have been made.
Resumo:
We use an empirical statistical model to demonstrate significant skill in making extended-range forecasts of the monthly-mean Arctic Oscillation (AO). Forecast skill derives from persistent circulation anomalies in the lowermost stratosphere and is greatest during boreal winter. A comparison to the Southern Hemisphere provides evidence that both the time scale and predictability of the AO depend on the presence of persistent circulation anomalies just above the tropopause. These circulation anomalies most likely affect the troposphere through changes to waves in the upper troposphere, which induce surface pressure changes that correspond to the AO.
Resumo:
Uncertainties in changes to the spatial distribution and magnitude of the heaviest extremes of daily monsoon rainfall over India are assessed in the doubled CO2 climate change scenarios in the IPCC Fourth Assessment Report. Results show diverse changes to the spatial pattern of the 95th and 99th subseasonal percentiles, which are strongly tied to the mean precipitation change during boreal summer. In some models, the projected increase in heaviest rainfall over India at CO2 doubling is entirely predictable based upon the surface warming and the Clausius–Clapeyron relation, a result which may depend upon the choice of convection scheme. Copyright © 2009 Royal Meteorological Society and Crown Copyright
Resumo:
Changes to the behaviour of subseasonal precipitation extremes and active-break cycles of the Indian summer monsoon are assessed in this study using pre-industrial and 2 × CO2 integrations of the Hadley Centre coupled model HadCM3, which is able to simulate the monsoon seasonal cycle reasonably. At 2 × CO2, mean summer rainfall increases slightly, especially over central and northern India. The mean intensity of daily precipitation during the monsoon is found to increase, consistent with fewer wet days, and there are increases to heavy rain events beyond changes in the mean alone. The chance of reaching particular thresholds of heavy rainfall is found to approximately double over northern India, increasing the likelihood of damaging floods on a seasonal basis. The local distribution of such projections is uncertain, however, given the large spread in mean monsoon rainfall change and associated extremes amongst even the most recent coupled climate models. The measured increase of the heaviest precipitation events over India is found to be broadly in line with the degree of atmospheric warming and associated increases in specific humidity, lending a degree of predictability to changes in rainfall extremes. Active-break cycles of the Indian summer monsoon, important particularly due to their effect on agricultural output, are shown to be reasonably represented in HadCM3, in particular with some degree of northward propagation. We note an intensification of both active and break events, particularly when measured against the annual cycle, although there is no suggestion of any change to the duration or likelihood of monsoon breaks. Copyright © 2009 Royal Meteorological Society
Resumo:
The aim of this study was to examine interrelationships between functional biochemical and microbial indicators of soil quality, and their suitability to differentiate areas under contrasting agricultural management regimes. The study included five 0.8 ha areas on a sandy-loam soil which had received contrasting fertility and cropping regimes over a 5 year period. These were organically managed vegetable, vegetable -cereal and arable rotations, an organically managed grass clover ley, and a conventional cereal rotation. The organic areas had been converted from conventional cereal production 5 years prior to the start of the study. All of the biochemical analyses, including light fraction organic matter (LFOM) C and N, labile organic N (LON), dissolved organic N and water-soluble carbohydrates showed significant differences between the areas, although the nature of the relationships between the areas varied between the different parameters, and were not related to differences in total soil organic matter content. The clearest differences were seen in LFOM C and N and LON, which were higher in the organic arable area relative to the other areas. In the case of the biological parameters, there were differences between the areas for biomass-N, ATP, chitin content, and the ratios of ATP: biomass and basal respiration: biomass. For these parameters, the precise relationships between the areas varied. However, relative to the conventionally managed area, areas under organic management generally had lower biomass-N and higher ATP contents. Arbuscular mycorrhizal fungus colonization potential was extremely low in the conventional area relative to the organic areas. Further, metabolic diversity and microbial community level physiological profiles, determined by analysis of microbial community metabolism using Biolog GN plates and the activities of eight key nutrient cycling enzymes, grouped the organic areas together, but separated them from the conventional area. We conclude that microbial parameters are more effective and consistent indicators of management induced changes to soil quality than biochemical parameters, and that a variety of biochemical and microbial analyses should be used when considering the impact of management on soil quality. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In a UK context, the importance of heritage tourism, the potential of the disabled market, and government policies concerning tourism, social inclusion, and the historic environment provide the setting within which access improvements at heritage attractions for disabled visitors are studied. At issue is how disabled access and conservation can be reconciled. The stakeholders range from the central actors, the disabled tourists and the heritage tourism service providers, through to the gatekeeper and lobby players in the conservation, disability, and tourism contexts. The critical power structures are identified. Changes to the historic environment are managed through the conservation planning system in which disability interests are not formally represented. Recent disability discrimination legislation has not altered this balance of power, and is a source of uncertainty over the access standards that should apply to heritage attractions. An evaluation of progress in implementing access improvements at heritage attractions reveals the limited extent of improvements undertaken to date. Consideration is given not only to physical access but also to alternative methods (intellectual access) of providing the heritage tourism service. In conclusion, the situation is examined from three perspectives. From the disabled tourists' perspective, choice of heritage attractions to visit remains restricted compared to that of nondisabled tourists. The lack of consultation with disabled stakeholders in the access improvements decision-making process is discussed, including the acceptability of alternative methods of service delivery to disabled tourists. The uncertainties facing heritage tourism service providers arising from the disability discrimination legislation are considered but, to ensure a more balanced recognition of disability interests, both conservation planning and disability discrimination legislation need to be amended, adjusting the roles of the legislative gatekeepers.
Resumo:
The nature and magnitude of climatic variability during the period of middle Pliocene warmth (ca 3.29–2.97 Ma) is poorly understood. We present a suite of palaeoclimate modelling experiments incorporating an advanced atmospheric general circulation model (GCM), coupled to a Q-flux ocean model for 3.29, 3.12 and 2.97 Ma BP. Astronomical solutions for the periods in question were derived from the Berger and Loutre BL2 astronomical solution. Boundary conditions, excluding sea surface temperatures (SSTs) which were predicted by the slab-ocean model, were provided from the USGS PRISM2 2°×2° digital data set. The model results indicate that little annual variation (0.5°C) in SSTs, relative to a ‘control’ experiment, occurred during the middle Pliocene in response to the altered orbital configurations. Annual surface air temperatures also displayed little variation. Seasonally, surface air temperatures displayed a trend of cooler temperatures during December, January and February, and warmer temperatures during June, July and August. This pattern is consistent with altered seasonality resulting from the prescribed orbital configurations. Precipitation changes follow the seasonal trend observed for surface air temperature. Compared to present-day, surface wind strength and wind stress over the North Atlantic, North Pacific and Southern Ocean remained greater in each of the Pliocene experiments. This suggests that wind-driven gyral circulation may have been consistently greater during the middle Pliocene. The trend of climatic variability predicted by the GCM for the middle Pliocene accords with geological data. However, it is unclear if the model correctly simulates the magnitude of the variation. This uncertainty is derived from, (a) the relative insensitivity of the GCM to perturbation in the imposed boundary conditions, (b) a lack of detailed time series data concerning changes to terrestrial ice cover and greenhouse gas concentrations for the middle Pliocene and (c) difficulties in representing the effects of ‘climatic history’ in snap-shot GCM experiments.